炎症信号通过下调OXPHOS基因诱导外伤性脑损伤线粒体功能障碍和神经元死亡。

IF 2.1 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hui Dong, Hui Zhang, Lei Cai, Quanyi Ye, Heping Wang, Bo Liu, Wenhu Zhang, Junxin Li
{"title":"炎症信号通过下调OXPHOS基因诱导外伤性脑损伤线粒体功能障碍和神经元死亡。","authors":"Hui Dong, Hui Zhang, Lei Cai, Quanyi Ye, Heping Wang, Bo Liu, Wenhu Zhang, Junxin Li","doi":"10.1007/s10528-024-10980-6","DOIUrl":null,"url":null,"abstract":"<p><p>Traumatic brain injury (TBI) is a major cause of neurological dysfunction and disability. This study aimed to investigate the transcriptomic changes and the functional consequences in TBI, focusing on the interplay between inflammation and mitochondrial impairment. Brain tissue samples from TBI patients and healthy controls were subjected to RNA-sequencing analysis. Mouse hippocampal HT-22 cells were treated with inflammatory cytokine and the PGC-1α activator ZLN005. Mitochondrial function, oxidative stress, and apoptosis were assessed using Seahorse respirometry, electron microscopy, flow cytometry, and molecular assays. A TBI mouse model was established to evaluate the therapeutic effects of ZLN005. Transcriptome profiling revealed downregulation of mitochondrial oxidative phosphorylation (OXPHOS) genes, particularly those encoded by the mitochondrial genome, along with enrichment of neurodegenerative pathways in TBI patients. Concomitantly, pro-inflammatory signaling pathways showed upregulation. In vitro studies demonstrated that inflammatory cytokine TNF-α treatment impaired mitochondrial respiration, induced oxidative stress and apoptosis in HT-22 cells, which could be rescued by ZLN005-mediated PGC-1α activation and restoration of OXPHOS gene expression. Administration of ZLN005 in the TBI mouse model alleviated neuronal cell death, preserved mitochondrial integrity, normalized OXPHOS gene levels in brain tissues, and improved cognitive function. This study uncovers a mechanistic link between inflammation-induced downregulation of mitochondrial OXPHOS genes and neuronal damage in TBI. Targeting this pathway by activating PGC-1α represents a potential therapeutic strategy for TBI.</p>","PeriodicalId":482,"journal":{"name":"Biochemical Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inflammatory Signaling Induces Mitochondrial Dysfunction and Neuronal Death in Traumatic Brain Injury via Downregulation of OXPHOS Genes.\",\"authors\":\"Hui Dong, Hui Zhang, Lei Cai, Quanyi Ye, Heping Wang, Bo Liu, Wenhu Zhang, Junxin Li\",\"doi\":\"10.1007/s10528-024-10980-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Traumatic brain injury (TBI) is a major cause of neurological dysfunction and disability. This study aimed to investigate the transcriptomic changes and the functional consequences in TBI, focusing on the interplay between inflammation and mitochondrial impairment. Brain tissue samples from TBI patients and healthy controls were subjected to RNA-sequencing analysis. Mouse hippocampal HT-22 cells were treated with inflammatory cytokine and the PGC-1α activator ZLN005. Mitochondrial function, oxidative stress, and apoptosis were assessed using Seahorse respirometry, electron microscopy, flow cytometry, and molecular assays. A TBI mouse model was established to evaluate the therapeutic effects of ZLN005. Transcriptome profiling revealed downregulation of mitochondrial oxidative phosphorylation (OXPHOS) genes, particularly those encoded by the mitochondrial genome, along with enrichment of neurodegenerative pathways in TBI patients. Concomitantly, pro-inflammatory signaling pathways showed upregulation. In vitro studies demonstrated that inflammatory cytokine TNF-α treatment impaired mitochondrial respiration, induced oxidative stress and apoptosis in HT-22 cells, which could be rescued by ZLN005-mediated PGC-1α activation and restoration of OXPHOS gene expression. Administration of ZLN005 in the TBI mouse model alleviated neuronal cell death, preserved mitochondrial integrity, normalized OXPHOS gene levels in brain tissues, and improved cognitive function. This study uncovers a mechanistic link between inflammation-induced downregulation of mitochondrial OXPHOS genes and neuronal damage in TBI. Targeting this pathway by activating PGC-1α represents a potential therapeutic strategy for TBI.</p>\",\"PeriodicalId\":482,\"journal\":{\"name\":\"Biochemical Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10528-024-10980-6\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10528-024-10980-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

创伤性脑损伤(TBI)是神经功能障碍和残疾的主要原因。本研究旨在探讨TBI的转录组变化和功能后果,重点关注炎症和线粒体损伤之间的相互作用。对TBI患者和健康对照者的脑组织样本进行rna测序分析。用炎性细胞因子和PGC-1α激活剂ZLN005处理小鼠海马HT-22细胞。采用海马呼吸仪、电镜、流式细胞术和分子测定法评估线粒体功能、氧化应激和细胞凋亡。建立TBI小鼠模型,评价ZLN005的治疗作用。转录组分析显示,TBI患者线粒体氧化磷酸化(OXPHOS)基因,特别是线粒体基因组编码的基因下调,同时神经退行性通路富集。同时,促炎信号通路出现上调。体外研究表明,炎症细胞因子TNF-α处理可损伤HT-22细胞的线粒体呼吸,诱导氧化应激和细胞凋亡,而zln005介导的PGC-1α激活和OXPHOS基因表达的恢复可挽救这些损伤。在TBI小鼠模型中给予ZLN005可减轻神经元细胞死亡,保持线粒体完整性,使脑组织中OXPHOS基因水平正常化,并改善认知功能。这项研究揭示了炎症诱导的线粒体OXPHOS基因下调与脑外伤神经元损伤之间的机制联系。通过激活PGC-1α靶向该通路代表了TBI的潜在治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inflammatory Signaling Induces Mitochondrial Dysfunction and Neuronal Death in Traumatic Brain Injury via Downregulation of OXPHOS Genes.

Traumatic brain injury (TBI) is a major cause of neurological dysfunction and disability. This study aimed to investigate the transcriptomic changes and the functional consequences in TBI, focusing on the interplay between inflammation and mitochondrial impairment. Brain tissue samples from TBI patients and healthy controls were subjected to RNA-sequencing analysis. Mouse hippocampal HT-22 cells were treated with inflammatory cytokine and the PGC-1α activator ZLN005. Mitochondrial function, oxidative stress, and apoptosis were assessed using Seahorse respirometry, electron microscopy, flow cytometry, and molecular assays. A TBI mouse model was established to evaluate the therapeutic effects of ZLN005. Transcriptome profiling revealed downregulation of mitochondrial oxidative phosphorylation (OXPHOS) genes, particularly those encoded by the mitochondrial genome, along with enrichment of neurodegenerative pathways in TBI patients. Concomitantly, pro-inflammatory signaling pathways showed upregulation. In vitro studies demonstrated that inflammatory cytokine TNF-α treatment impaired mitochondrial respiration, induced oxidative stress and apoptosis in HT-22 cells, which could be rescued by ZLN005-mediated PGC-1α activation and restoration of OXPHOS gene expression. Administration of ZLN005 in the TBI mouse model alleviated neuronal cell death, preserved mitochondrial integrity, normalized OXPHOS gene levels in brain tissues, and improved cognitive function. This study uncovers a mechanistic link between inflammation-induced downregulation of mitochondrial OXPHOS genes and neuronal damage in TBI. Targeting this pathway by activating PGC-1α represents a potential therapeutic strategy for TBI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Genetics
Biochemical Genetics 生物-生化与分子生物学
CiteScore
3.90
自引率
0.00%
发文量
133
审稿时长
4.8 months
期刊介绍: Biochemical Genetics welcomes original manuscripts that address and test clear scientific hypotheses, are directed to a broad scientific audience, and clearly contribute to the advancement of the field through the use of sound sampling or experimental design, reliable analytical methodologies and robust statistical analyses. Although studies focusing on particular regions and target organisms are welcome, it is not the journal’s goal to publish essentially descriptive studies that provide results with narrow applicability, or are based on very small samples or pseudoreplication. Rather, Biochemical Genetics welcomes review articles that go beyond summarizing previous publications and create added value through the systematic analysis and critique of the current state of knowledge or by conducting meta-analyses. Methodological articles are also within the scope of Biological Genetics, particularly when new laboratory techniques or computational approaches are fully described and thoroughly compared with the existing benchmark methods. Biochemical Genetics welcomes articles on the following topics: Genomics; Proteomics; Population genetics; Phylogenetics; Metagenomics; Microbial genetics; Genetics and evolution of wild and cultivated plants; Animal genetics and evolution; Human genetics and evolution; Genetic disorders; Genetic markers of diseases; Gene technology and therapy; Experimental and analytical methods; Statistical and computational methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信