高熵材料的合成

0 CHEMISTRY, MULTIDISCIPLINARY
Yifan Sun, Sheng Dai
{"title":"高熵材料的合成","authors":"Yifan Sun, Sheng Dai","doi":"10.1038/s44160-024-00690-7","DOIUrl":null,"url":null,"abstract":"High-entropy materials (HEMs) exhibit compelling behaviours that are distinct from those in conventional solid solutions. Such disordered multicomponent systems bring unprecedented compositional and structural complexities that hinder a thorough understanding of entropy stabilization and its impact on phase selection and property optimization. The controlled fabrication of HEMs, ideally reaching the same level of detail as traditional alloy design, is desirable. The past decade has witnessed the development of advanced synthesis methodologies and techniques to introduce various degrees of control to this class of inherently disordered materials. Here we discuss the emerging rationales for synthesizing bulk and nanostructured HEMs with tunable microstructures, extended compositions and tailored atomic configurations. Case studies of formation pathways and stabilization mechanisms of different types of HEM reveal insightful synthesis guidelines. This progress enables predictable and rational manipulation of atomic order in the chemically disordered lattice, laying the foundations for exceptional functionalities. The emergence of high-entropy materials affords opportunities to harmonize precision and disorder for materials design. This Review highlights the synthesis principles and strategies towards controllable and predictive fabrication of high-entropy materials with complex chemical compositions, engineered microstructures and tailored atomic configurations.","PeriodicalId":74251,"journal":{"name":"Nature synthesis","volume":"3 12","pages":"1457-1470"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of high-entropy materials\",\"authors\":\"Yifan Sun, Sheng Dai\",\"doi\":\"10.1038/s44160-024-00690-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-entropy materials (HEMs) exhibit compelling behaviours that are distinct from those in conventional solid solutions. Such disordered multicomponent systems bring unprecedented compositional and structural complexities that hinder a thorough understanding of entropy stabilization and its impact on phase selection and property optimization. The controlled fabrication of HEMs, ideally reaching the same level of detail as traditional alloy design, is desirable. The past decade has witnessed the development of advanced synthesis methodologies and techniques to introduce various degrees of control to this class of inherently disordered materials. Here we discuss the emerging rationales for synthesizing bulk and nanostructured HEMs with tunable microstructures, extended compositions and tailored atomic configurations. Case studies of formation pathways and stabilization mechanisms of different types of HEM reveal insightful synthesis guidelines. This progress enables predictable and rational manipulation of atomic order in the chemically disordered lattice, laying the foundations for exceptional functionalities. The emergence of high-entropy materials affords opportunities to harmonize precision and disorder for materials design. This Review highlights the synthesis principles and strategies towards controllable and predictive fabrication of high-entropy materials with complex chemical compositions, engineered microstructures and tailored atomic configurations.\",\"PeriodicalId\":74251,\"journal\":{\"name\":\"Nature synthesis\",\"volume\":\"3 12\",\"pages\":\"1457-1470\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44160-024-00690-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature synthesis","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44160-024-00690-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高熵材料(hem)表现出与传统固溶体不同的引人注目的行为。这种无序的多组分系统带来了前所未有的组成和结构复杂性,阻碍了对熵稳定及其对相选择和性能优化的影响的透彻理解。hem的控制制造,理想地达到与传统合金设计相同的细节水平,是可取的。过去十年见证了先进合成方法和技术的发展,为这类固有无序的材料引入了不同程度的控制。在这里,我们讨论了合成具有可调微结构、扩展成分和定制原子构型的体状和纳米结构hem的新原理。不同类型HEM的形成途径和稳定机制的案例研究揭示了有见地的合成指南。这一进展使得在化学无序的晶格中可以预测和合理地操纵原子秩序,为特殊功能奠定了基础。高熵材料的出现为材料设计提供了协调精确与无序的机会。本文综述了具有复杂化学成分、工程化微结构和定制化原子构型的高熵材料的合成原理和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of high-entropy materials

Synthesis of high-entropy materials
High-entropy materials (HEMs) exhibit compelling behaviours that are distinct from those in conventional solid solutions. Such disordered multicomponent systems bring unprecedented compositional and structural complexities that hinder a thorough understanding of entropy stabilization and its impact on phase selection and property optimization. The controlled fabrication of HEMs, ideally reaching the same level of detail as traditional alloy design, is desirable. The past decade has witnessed the development of advanced synthesis methodologies and techniques to introduce various degrees of control to this class of inherently disordered materials. Here we discuss the emerging rationales for synthesizing bulk and nanostructured HEMs with tunable microstructures, extended compositions and tailored atomic configurations. Case studies of formation pathways and stabilization mechanisms of different types of HEM reveal insightful synthesis guidelines. This progress enables predictable and rational manipulation of atomic order in the chemically disordered lattice, laying the foundations for exceptional functionalities. The emergence of high-entropy materials affords opportunities to harmonize precision and disorder for materials design. This Review highlights the synthesis principles and strategies towards controllable and predictive fabrication of high-entropy materials with complex chemical compositions, engineered microstructures and tailored atomic configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信