Radosław Stec, Krzysztof Sitko, Marta Pogrzeba, Szymon Rusinowski, Paulina Janota, Izabela Ratman-Kłosińska, Jacek Krzyżak
{"title":"土壤微塑料的提取效率取决于样品的培养时间和使用的有机物去除剂","authors":"Radosław Stec, Krzysztof Sitko, Marta Pogrzeba, Szymon Rusinowski, Paulina Janota, Izabela Ratman-Kłosińska, Jacek Krzyżak","doi":"10.1007/s11270-024-07685-2","DOIUrl":null,"url":null,"abstract":"<div><p>Environmental pollution by microplastics is now a global problem, as global plastic production is increasing and at the same time recycling of plastic waste is low. In recent years, a number of methods have been developed to determine the content of microplastics in soil. This study compares the efficiency of microplastic extraction in two-week and three-month incubation samples from three different soils artificially contaminated with different types of microplastics. H<sub>2</sub>O<sub>2</sub> and KOH were used as agents to remove organic matter. The effects of changing the incubation time were significant in soils with a high organic matter content. A longer incubation time resulted in a lower efficiency of microplastic extraction. Compared to the results obtained with the control method after a two-week incubation, the loose sand samples achieved a similar extraction efficiency (86%), the amount of MP recovered in the uncontaminated sandy clay samples was 75%, while the sandy clay soils contaminated with heavy metals was 44%. The samples without organic matter removal showed a significantly better recovery rate of microplastics than the samples treated with H<sub>2</sub>O<sub>2</sub> and KOH.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil Microplastic Extraction Efficiency Depends on the Sample Incubation Time and the Organic Matter Removal Agent Used\",\"authors\":\"Radosław Stec, Krzysztof Sitko, Marta Pogrzeba, Szymon Rusinowski, Paulina Janota, Izabela Ratman-Kłosińska, Jacek Krzyżak\",\"doi\":\"10.1007/s11270-024-07685-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Environmental pollution by microplastics is now a global problem, as global plastic production is increasing and at the same time recycling of plastic waste is low. In recent years, a number of methods have been developed to determine the content of microplastics in soil. This study compares the efficiency of microplastic extraction in two-week and three-month incubation samples from three different soils artificially contaminated with different types of microplastics. H<sub>2</sub>O<sub>2</sub> and KOH were used as agents to remove organic matter. The effects of changing the incubation time were significant in soils with a high organic matter content. A longer incubation time resulted in a lower efficiency of microplastic extraction. Compared to the results obtained with the control method after a two-week incubation, the loose sand samples achieved a similar extraction efficiency (86%), the amount of MP recovered in the uncontaminated sandy clay samples was 75%, while the sandy clay soils contaminated with heavy metals was 44%. The samples without organic matter removal showed a significantly better recovery rate of microplastics than the samples treated with H<sub>2</sub>O<sub>2</sub> and KOH.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07685-2\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07685-2","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Soil Microplastic Extraction Efficiency Depends on the Sample Incubation Time and the Organic Matter Removal Agent Used
Environmental pollution by microplastics is now a global problem, as global plastic production is increasing and at the same time recycling of plastic waste is low. In recent years, a number of methods have been developed to determine the content of microplastics in soil. This study compares the efficiency of microplastic extraction in two-week and three-month incubation samples from three different soils artificially contaminated with different types of microplastics. H2O2 and KOH were used as agents to remove organic matter. The effects of changing the incubation time were significant in soils with a high organic matter content. A longer incubation time resulted in a lower efficiency of microplastic extraction. Compared to the results obtained with the control method after a two-week incubation, the loose sand samples achieved a similar extraction efficiency (86%), the amount of MP recovered in the uncontaminated sandy clay samples was 75%, while the sandy clay soils contaminated with heavy metals was 44%. The samples without organic matter removal showed a significantly better recovery rate of microplastics than the samples treated with H2O2 and KOH.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.