Banach-Mazur非致密性数

IF 0.8 Q2 MATHEMATICS
G. García, G. Mora
{"title":"Banach-Mazur非致密性数","authors":"G. García,&nbsp;G. Mora","doi":"10.1007/s43036-024-00408-8","DOIUrl":null,"url":null,"abstract":"<div><p>In the present paper, based on the so called degree of nondensifiability (DND), we introduce the concept of Banach–Mazur nondensifiability number of two given Banach spaces and prove that such a number is an optimal lower bound for the well known Banach–Mazur distance. For a given infinite dimensional Banach space, we also introduce a new constant. We demonstrate a relationship between this constant and the Banach–Mazur distance.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Banach–Mazur nondensifiability number\",\"authors\":\"G. García,&nbsp;G. Mora\",\"doi\":\"10.1007/s43036-024-00408-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present paper, based on the so called degree of nondensifiability (DND), we introduce the concept of Banach–Mazur nondensifiability number of two given Banach spaces and prove that such a number is an optimal lower bound for the well known Banach–Mazur distance. For a given infinite dimensional Banach space, we also introduce a new constant. We demonstrate a relationship between this constant and the Banach–Mazur distance.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-024-00408-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-024-00408-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文从非致密度(DND)的概念出发,引入了给定两个Banach - mazur非致密数的概念,并证明了该数是Banach - mazur距离的最优下界。对于给定的无限维巴拿赫空间,我们也引入了一个新的常数。我们证明了这个常数与巴拿赫-马祖尔距离之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Banach–Mazur nondensifiability number

In the present paper, based on the so called degree of nondensifiability (DND), we introduce the concept of Banach–Mazur nondensifiability number of two given Banach spaces and prove that such a number is an optimal lower bound for the well known Banach–Mazur distance. For a given infinite dimensional Banach space, we also introduce a new constant. We demonstrate a relationship between this constant and the Banach–Mazur distance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信