Ji Ha Lee, Wataru Kanda, Tomoyuki Tachibana, Minhye Kim, Sung Ho Jung, Riku Kawasaki and Akihiro Yabuki
{"title":"紫外光响应杯状[4]芳烃凝胶包封与释放的可控流变性能","authors":"Ji Ha Lee, Wataru Kanda, Tomoyuki Tachibana, Minhye Kim, Sung Ho Jung, Riku Kawasaki and Akihiro Yabuki","doi":"10.1039/D4RA06787H","DOIUrl":null,"url":null,"abstract":"<p >This study investigates the potential of calix[4]arene-based supramolecular gels for use in drug delivery systems, focusing on both their rheological properties and controlled drug release behavior. We explore how key factors, including temperature, solvent exchange, and UV exposure, influence the gel's mechanical strength and its ability to encapsulate and release drugs. Specifically, our work examines how these external stimuli affect the stability of the gel matrix and modulate the release rate of the encapsulated drug. By systematically evaluating the effects of each factor, we aim to identify conditions that optimize drug release kinetics. The findings offer valuable insights into the development of a tunable, responsive platform for efficient drug delivery, highlighting the potential of calix[4]arene gels as promising candidates for advanced therapeutic applications.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 53","pages":" 39142-39146"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra06787h?page=search","citationCount":"0","resultStr":"{\"title\":\"Controllable rheological properties of UV-responsive calix[4]arene gel for drug encapsulation and release\",\"authors\":\"Ji Ha Lee, Wataru Kanda, Tomoyuki Tachibana, Minhye Kim, Sung Ho Jung, Riku Kawasaki and Akihiro Yabuki\",\"doi\":\"10.1039/D4RA06787H\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This study investigates the potential of calix[4]arene-based supramolecular gels for use in drug delivery systems, focusing on both their rheological properties and controlled drug release behavior. We explore how key factors, including temperature, solvent exchange, and UV exposure, influence the gel's mechanical strength and its ability to encapsulate and release drugs. Specifically, our work examines how these external stimuli affect the stability of the gel matrix and modulate the release rate of the encapsulated drug. By systematically evaluating the effects of each factor, we aim to identify conditions that optimize drug release kinetics. The findings offer valuable insights into the development of a tunable, responsive platform for efficient drug delivery, highlighting the potential of calix[4]arene gels as promising candidates for advanced therapeutic applications.</p>\",\"PeriodicalId\":102,\"journal\":{\"name\":\"RSC Advances\",\"volume\":\" 53\",\"pages\":\" 39142-39146\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ra/d4ra06787h?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSC Advances\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra06787h\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ra/d4ra06787h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Controllable rheological properties of UV-responsive calix[4]arene gel for drug encapsulation and release
This study investigates the potential of calix[4]arene-based supramolecular gels for use in drug delivery systems, focusing on both their rheological properties and controlled drug release behavior. We explore how key factors, including temperature, solvent exchange, and UV exposure, influence the gel's mechanical strength and its ability to encapsulate and release drugs. Specifically, our work examines how these external stimuli affect the stability of the gel matrix and modulate the release rate of the encapsulated drug. By systematically evaluating the effects of each factor, we aim to identify conditions that optimize drug release kinetics. The findings offer valuable insights into the development of a tunable, responsive platform for efficient drug delivery, highlighting the potential of calix[4]arene gels as promising candidates for advanced therapeutic applications.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.