一种高度可扩展的泊松编码视网膜光遗传刺激器,具有全模拟的基于ed的自适应尖峰检测和闭环校准

Tayebeh Yousefi;Georg Zoidl;Hossein Kassiri
{"title":"一种高度可扩展的泊松编码视网膜光遗传刺激器,具有全模拟的基于ed的自适应尖峰检测和闭环校准","authors":"Tayebeh Yousefi;Georg Zoidl;Hossein Kassiri","doi":"10.1109/TBCAS.2024.3488713","DOIUrl":null,"url":null,"abstract":"We present a fully implantable, inductively powered optogenetic stimulator that enhances stimulation efficacy and pathway specificity while maximizing energy efficiency and channel-count scalability. By leveraging opsins’ photon integration properties with raster scanning and Poisson-coded stimulation, we achieve a uniform power profile and reduce wiring complexity, enabling a scalable system that supports more stimulation channels without compromising safety or functionality, improving prosthetic vision resolution. We also employed a compact and power-efficient (0.026 \n<inline-formula><tex-math>$mm^{2}$</tex-math></inline-formula>\n and 1.02 \n<inline-formula><tex-math>$\\mu$</tex-math></inline-formula>\nW overhead) SNR-boosted ADC-less spike detection circuit to adapt each LED's light intensity based on real-time feedback from RGC spiking cells. This closed-loop adaptivity adjusts stimulation to opsin distribution variations, over time and across different patients, ensuring effective and consistent stimulation across patients, enhancing both energy efficiency and visual perception quality. The 3 \n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n 3 \n<inline-formula><tex-math>$mm^{2}$</tex-math></inline-formula>\n IC, fabricated in 180nm CMOS, is coupled with a 100-channel custom optrode array fabricated using an InGaN process on a sapphire substrate. Experimental results demonstrate circuit-level performance, system-level efficacy, and in-vitro validation. Comparison tables highlight our work's advantages over state-of-the-art implantable spike detection systems and retinal prostheses.","PeriodicalId":94031,"journal":{"name":"IEEE transactions on biomedical circuits and systems","volume":"18 6","pages":"1253-1267"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Highly-Scalable Poisson-Coded Retinal Optogenetic Stimulator With Fully-Analog ED-Based Adaptive Spike Detection and Closed-Loop Calibration\",\"authors\":\"Tayebeh Yousefi;Georg Zoidl;Hossein Kassiri\",\"doi\":\"10.1109/TBCAS.2024.3488713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a fully implantable, inductively powered optogenetic stimulator that enhances stimulation efficacy and pathway specificity while maximizing energy efficiency and channel-count scalability. By leveraging opsins’ photon integration properties with raster scanning and Poisson-coded stimulation, we achieve a uniform power profile and reduce wiring complexity, enabling a scalable system that supports more stimulation channels without compromising safety or functionality, improving prosthetic vision resolution. We also employed a compact and power-efficient (0.026 \\n<inline-formula><tex-math>$mm^{2}$</tex-math></inline-formula>\\n and 1.02 \\n<inline-formula><tex-math>$\\\\mu$</tex-math></inline-formula>\\nW overhead) SNR-boosted ADC-less spike detection circuit to adapt each LED's light intensity based on real-time feedback from RGC spiking cells. This closed-loop adaptivity adjusts stimulation to opsin distribution variations, over time and across different patients, ensuring effective and consistent stimulation across patients, enhancing both energy efficiency and visual perception quality. The 3 \\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n 3 \\n<inline-formula><tex-math>$mm^{2}$</tex-math></inline-formula>\\n IC, fabricated in 180nm CMOS, is coupled with a 100-channel custom optrode array fabricated using an InGaN process on a sapphire substrate. Experimental results demonstrate circuit-level performance, system-level efficacy, and in-vitro validation. Comparison tables highlight our work's advantages over state-of-the-art implantable spike detection systems and retinal prostheses.\",\"PeriodicalId\":94031,\"journal\":{\"name\":\"IEEE transactions on biomedical circuits and systems\",\"volume\":\"18 6\",\"pages\":\"1253-1267\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biomedical circuits and systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10740008/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biomedical circuits and systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10740008/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种完全可植入的、感应供电的光遗传刺激器,它可以提高刺激效果和途径特异性,同时最大限度地提高能量效率和通道计数的可扩展性。通过利用opsins的光子集成特性与光栅扫描和泊松编码刺激,我们实现了统一的功率分布并降低了布线复杂性,使可扩展的系统支持更多的刺激通道,而不会影响安全性或功能性,提高了假肢的视觉分辨率。我们还采用了一个紧凑和节能的(0.026 $mm^{2}$和1.02 $\mu$W开销)信噪比增强的adc无尖峰检测电路,根据RGC尖峰细胞的实时反馈来适应每个LED的光强度。随着时间的推移和不同患者之间,这种闭环适应性调节刺激以适应视蛋白分布的变化,确保患者之间有效和一致的刺激,提高能量效率和视觉感知质量。采用180nm CMOS制造的3 $\ × $ 3 $mm^{2}$ IC与在蓝宝石衬底上使用InGaN工艺制造的100通道定制光极阵列相结合。实验结果证明了电路级性能、系统级效能和体外验证。比较表突出了我们的工作比最先进的植入式脉冲检测系统和视网膜假体的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Highly-Scalable Poisson-Coded Retinal Optogenetic Stimulator With Fully-Analog ED-Based Adaptive Spike Detection and Closed-Loop Calibration
We present a fully implantable, inductively powered optogenetic stimulator that enhances stimulation efficacy and pathway specificity while maximizing energy efficiency and channel-count scalability. By leveraging opsins’ photon integration properties with raster scanning and Poisson-coded stimulation, we achieve a uniform power profile and reduce wiring complexity, enabling a scalable system that supports more stimulation channels without compromising safety or functionality, improving prosthetic vision resolution. We also employed a compact and power-efficient (0.026 $mm^{2}$ and 1.02 $\mu$ W overhead) SNR-boosted ADC-less spike detection circuit to adapt each LED's light intensity based on real-time feedback from RGC spiking cells. This closed-loop adaptivity adjusts stimulation to opsin distribution variations, over time and across different patients, ensuring effective and consistent stimulation across patients, enhancing both energy efficiency and visual perception quality. The 3 $\times$ 3 $mm^{2}$ IC, fabricated in 180nm CMOS, is coupled with a 100-channel custom optrode array fabricated using an InGaN process on a sapphire substrate. Experimental results demonstrate circuit-level performance, system-level efficacy, and in-vitro validation. Comparison tables highlight our work's advantages over state-of-the-art implantable spike detection systems and retinal prostheses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信