Kolmogorov-Arnold网络使学习物理定律变得简单

IF 4.8 2区 化学 Q2 CHEMISTRY, PHYSICAL
Yue Wu, Tianhao Su, Bingsheng Du, Shunbo Hu, Jie Xiong, Deng Pan
{"title":"Kolmogorov-Arnold网络使学习物理定律变得简单","authors":"Yue Wu, Tianhao Su, Bingsheng Du, Shunbo Hu, Jie Xiong, Deng Pan","doi":"10.1021/acs.jpclett.4c02589","DOIUrl":null,"url":null,"abstract":"In recent years, contrastive learning has gained widespread adoption in machine learning applications to physical systems primarily due to its distinctive cross-modal capabilities and scalability. Building on the foundation of Kolmogorov–Arnold Networks (KANs) [Liu, Z. et al. Kan: Kolmogorov-arnold\nnetworks. <cite><i>arXiv</i></cite> <span>2024</span>, 2404.19756], we introduce a novel contrastive learning framework, Kolmogorov–Arnold Contrastive Crystal Property Pretraining (KCCP), which integrates the principles of CLIP and KAN to establish robust correlations between crystal structures and their physical properties. During the training process, we conducted a comparative analysis between Multilayer Perceptron (MLP) and KAN, revealing that KAN significantly outperforms MLP in both accuracy and convergence speed for this task. By extending the capabilities of contrastive learning to the realm of physical systems, KCCP offers a promising approach for constructing cross-data structural and cross-modal physical models, representing an area of considerable potential.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"47 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kolmogorov–Arnold Network Made Learning Physics Laws Simple\",\"authors\":\"Yue Wu, Tianhao Su, Bingsheng Du, Shunbo Hu, Jie Xiong, Deng Pan\",\"doi\":\"10.1021/acs.jpclett.4c02589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, contrastive learning has gained widespread adoption in machine learning applications to physical systems primarily due to its distinctive cross-modal capabilities and scalability. Building on the foundation of Kolmogorov–Arnold Networks (KANs) [Liu, Z. et al. Kan: Kolmogorov-arnold\\nnetworks. <cite><i>arXiv</i></cite> <span>2024</span>, 2404.19756], we introduce a novel contrastive learning framework, Kolmogorov–Arnold Contrastive Crystal Property Pretraining (KCCP), which integrates the principles of CLIP and KAN to establish robust correlations between crystal structures and their physical properties. During the training process, we conducted a comparative analysis between Multilayer Perceptron (MLP) and KAN, revealing that KAN significantly outperforms MLP in both accuracy and convergence speed for this task. By extending the capabilities of contrastive learning to the realm of physical systems, KCCP offers a promising approach for constructing cross-data structural and cross-modal physical models, representing an area of considerable potential.\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpclett.4c02589\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c02589","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

近年来,对比学习在物理系统的机器学习应用中得到了广泛的采用,主要是由于其独特的跨模态能力和可扩展性。基于Kolmogorov-Arnold网络(KANs)的构建[Liu, Z.等。]菅直人:Kolmogorov-arnoldnetworks。本文提出了一种新的对比学习框架Kolmogorov-Arnold对比晶体性质预训练(KCCP),该框架结合了CLIP和KAN的原理来建立晶体结构与其物理性质之间的鲁棒相关性。[j] [xiv] 2024, 2404.19756]在训练过程中,我们对Multilayer Perceptron (MLP)和KAN进行了比较分析,发现KAN在该任务的精度和收敛速度上都明显优于MLP。通过将对比学习的能力扩展到物理系统领域,KCCP为构建跨数据结构和跨模态物理模型提供了一种很有前途的方法,代表了一个相当有潜力的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Kolmogorov–Arnold Network Made Learning Physics Laws Simple

Kolmogorov–Arnold Network Made Learning Physics Laws Simple
In recent years, contrastive learning has gained widespread adoption in machine learning applications to physical systems primarily due to its distinctive cross-modal capabilities and scalability. Building on the foundation of Kolmogorov–Arnold Networks (KANs) [Liu, Z. et al. Kan: Kolmogorov-arnold networks. arXiv 2024, 2404.19756], we introduce a novel contrastive learning framework, Kolmogorov–Arnold Contrastive Crystal Property Pretraining (KCCP), which integrates the principles of CLIP and KAN to establish robust correlations between crystal structures and their physical properties. During the training process, we conducted a comparative analysis between Multilayer Perceptron (MLP) and KAN, revealing that KAN significantly outperforms MLP in both accuracy and convergence speed for this task. By extending the capabilities of contrastive learning to the realm of physical systems, KCCP offers a promising approach for constructing cross-data structural and cross-modal physical models, representing an area of considerable potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信