快速脱碳下数据驱动的变暖峰值预测

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Noah S. Diffenbaugh, Elizabeth A. Barnes
{"title":"快速脱碳下数据驱动的变暖峰值预测","authors":"Noah S. Diffenbaugh,&nbsp;Elizabeth A. Barnes","doi":"10.1029/2024GL111832","DOIUrl":null,"url":null,"abstract":"<p>The severe impacts associated with recent record-setting annual global temperatures elevate the need to accurately predict the hottest conditions that could occur even if the most ambitious decarbonization goals are achieved. We use convolutional neural networks (CNNs) to predict peak global warming from recent observed temperature maps and future cumulative CO<sub>2</sub> emissions. For the SSP1-1.9 decarbonization scenario there is &gt;99% probability that mean global warming exceeds 1.5°C, approximately even odds that it reaches 2°C, and ∼90% probability that the hottest year globally exceeds 2023 by at least 0.5°C. Further, for the SSP2-4.5 decarbonization scenario, there is &gt;90% probability that the hottest annual global temperature anomaly is twice the 2023 anomaly. That our framework makes highly accurate out-of-sample predictions of the hottest historical year provides confidence in the predicted future probabilities, suggesting substantial risks from the extreme local conditions that are likely to result from globally hot years during rapid decarbonization.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 23","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111832","citationCount":"0","resultStr":"{\"title\":\"Data-Driven Predictions of Peak Warming Under Rapid Decarbonization\",\"authors\":\"Noah S. Diffenbaugh,&nbsp;Elizabeth A. Barnes\",\"doi\":\"10.1029/2024GL111832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The severe impacts associated with recent record-setting annual global temperatures elevate the need to accurately predict the hottest conditions that could occur even if the most ambitious decarbonization goals are achieved. We use convolutional neural networks (CNNs) to predict peak global warming from recent observed temperature maps and future cumulative CO<sub>2</sub> emissions. For the SSP1-1.9 decarbonization scenario there is &gt;99% probability that mean global warming exceeds 1.5°C, approximately even odds that it reaches 2°C, and ∼90% probability that the hottest year globally exceeds 2023 by at least 0.5°C. Further, for the SSP2-4.5 decarbonization scenario, there is &gt;90% probability that the hottest annual global temperature anomaly is twice the 2023 anomaly. That our framework makes highly accurate out-of-sample predictions of the hottest historical year provides confidence in the predicted future probabilities, suggesting substantial risks from the extreme local conditions that are likely to result from globally hot years during rapid decarbonization.</p>\",\"PeriodicalId\":12523,\"journal\":{\"name\":\"Geophysical Research Letters\",\"volume\":\"51 23\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL111832\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Research Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111832\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL111832","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

最近创纪录的全球年度气温所带来的严重影响,增加了准确预测即使实现了最雄心勃勃的脱碳目标也可能出现的最热天气的必要性。我们使用卷积神经网络(cnn)根据最近观测到的温度图和未来的累积二氧化碳排放量来预测全球变暖的峰值。对于SSP1-1.9脱碳情景,平均全球变暖超过1.5°C的概率为99%,达到2°C的概率约为一半,全球最热的年份比2023年至少高出0.5°C的概率为~ 90%。此外,对于SSP2-4.5脱碳情景,有>;90%的可能性,最热的年度全球温度异常是2023年异常的两倍。我们的框架对历史上最热的年份做出了高度准确的样本外预测,这为预测的未来概率提供了信心,表明在快速脱碳期间,全球炎热年份可能导致极端局部条件的巨大风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-Driven Predictions of Peak Warming Under Rapid Decarbonization

The severe impacts associated with recent record-setting annual global temperatures elevate the need to accurately predict the hottest conditions that could occur even if the most ambitious decarbonization goals are achieved. We use convolutional neural networks (CNNs) to predict peak global warming from recent observed temperature maps and future cumulative CO2 emissions. For the SSP1-1.9 decarbonization scenario there is >99% probability that mean global warming exceeds 1.5°C, approximately even odds that it reaches 2°C, and ∼90% probability that the hottest year globally exceeds 2023 by at least 0.5°C. Further, for the SSP2-4.5 decarbonization scenario, there is >90% probability that the hottest annual global temperature anomaly is twice the 2023 anomaly. That our framework makes highly accurate out-of-sample predictions of the hottest historical year provides confidence in the predicted future probabilities, suggesting substantial risks from the extreme local conditions that are likely to result from globally hot years during rapid decarbonization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信