多营养组合影响了开花植物、蜜蜂和蜜蜂肠道微生物群三方系统中的β-多样性

IF 5.4 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Ecography Pub Date : 2024-12-10 DOI:10.1111/ecog.07490
Magda Argueta-Guzmán, Quinn S. McFrederick, Marko J. Spasojevic
{"title":"多营养组合影响了开花植物、蜜蜂和蜜蜂肠道微生物群三方系统中的β-多样性","authors":"Magda Argueta-Guzmán, Quinn S. McFrederick, Marko J. Spasojevic","doi":"10.1111/ecog.07490","DOIUrl":null,"url":null,"abstract":"Theoretical frameworks of terrestrial community assembly often focus on single trophic levels (e.g. plants) without considering how complex interdependencies across different trophic levels influence assembly mechanisms. Yet, when multiple trophic levels are considered (e.g. plant–pollinator, plant–microbe interactions) the focus is typically on network analyses at local spatial scales. As spatial variation in biodiversity (β-diversity) is increasingly being recognized for its relevance in understanding community assembly and conservation, considering how β-diversity at one trophic level may be influenced by assembly processes that alter abundance and composition of interacting communities at a different trophic level (multitrophic dependency) is critical. Here, we build on single trophic level community assembly frameworks to explore the assembly processes affecting β-diversity in multitrophic communities comprising flowering plants, their bee pollinators, and the corresponding bee-gut microbiota to better understand the importance of multitrophic dependency in community assembly. Using distance-based redundancy analysis and variation partitioning, we investigated community assembly processes across three interconnected trophic levels in two ecological regions in southern California: the Santa Monica Mountains and three islands of the Channel Island Archipelago. We found that the deterministic effects of multitrophic dependency are stronger on directly connected trophic levels than on indirectly connected trophic levels (i.e. flowers explain bee communities and bees explain bee-gut bacteria communities, but flowers weakly explain variation in bee-gut bacteria communities). We also found notable regional variation, where multitrophic dependency was weaker on the Channel Islands as ecological drift was more pronounced. Our results suggest that integrating the influence of multitrophic dependency on community assembly is important for elucidating drivers of β-diversity and that multitrophic dependency can be determined by the regional context in which β-diversity is measured. Taken together, our results highlight the importance of considering multiscale perspectives – both multitrophic and multiregional – in community assembly to fully elucidate assembly processes.","PeriodicalId":51026,"journal":{"name":"Ecography","volume":"41 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multitrophic assembly influences β-diversity across a tripartite system of flowering plants, bees, and bee-gut microbiomes\",\"authors\":\"Magda Argueta-Guzmán, Quinn S. McFrederick, Marko J. Spasojevic\",\"doi\":\"10.1111/ecog.07490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical frameworks of terrestrial community assembly often focus on single trophic levels (e.g. plants) without considering how complex interdependencies across different trophic levels influence assembly mechanisms. Yet, when multiple trophic levels are considered (e.g. plant–pollinator, plant–microbe interactions) the focus is typically on network analyses at local spatial scales. As spatial variation in biodiversity (β-diversity) is increasingly being recognized for its relevance in understanding community assembly and conservation, considering how β-diversity at one trophic level may be influenced by assembly processes that alter abundance and composition of interacting communities at a different trophic level (multitrophic dependency) is critical. Here, we build on single trophic level community assembly frameworks to explore the assembly processes affecting β-diversity in multitrophic communities comprising flowering plants, their bee pollinators, and the corresponding bee-gut microbiota to better understand the importance of multitrophic dependency in community assembly. Using distance-based redundancy analysis and variation partitioning, we investigated community assembly processes across three interconnected trophic levels in two ecological regions in southern California: the Santa Monica Mountains and three islands of the Channel Island Archipelago. We found that the deterministic effects of multitrophic dependency are stronger on directly connected trophic levels than on indirectly connected trophic levels (i.e. flowers explain bee communities and bees explain bee-gut bacteria communities, but flowers weakly explain variation in bee-gut bacteria communities). We also found notable regional variation, where multitrophic dependency was weaker on the Channel Islands as ecological drift was more pronounced. Our results suggest that integrating the influence of multitrophic dependency on community assembly is important for elucidating drivers of β-diversity and that multitrophic dependency can be determined by the regional context in which β-diversity is measured. Taken together, our results highlight the importance of considering multiscale perspectives – both multitrophic and multiregional – in community assembly to fully elucidate assembly processes.\",\"PeriodicalId\":51026,\"journal\":{\"name\":\"Ecography\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/ecog.07490\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecography","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/ecog.07490","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

摘要

陆地群落组合的理论框架往往侧重于单一营养水平(如植物),而没有考虑不同营养水平之间复杂的相互依赖关系如何影响组合机制。然而,当考虑多个营养水平(例如植物-传粉者,植物-微生物相互作用)时,重点通常是在局部空间尺度上的网络分析。随着生物多样性的空间变化(β-多样性)越来越被认为与理解群落的聚集和保护有关,考虑一个营养水平上的β-多样性如何受到聚集过程的影响,这些过程改变了不同营养水平上相互作用的群落的丰度和组成(多营养依赖)是至关重要的。本文以单营养级群落组装框架为基础,探讨了由开花植物、蜜蜂传粉者和相应的蜜蜂肠道微生物群组成的多营养群落中影响β-多样性的组装过程,以更好地理解多营养依赖性在群落组装中的重要性。利用基于距离的冗余分析和变异划分,研究了南加州两个生态区(圣莫尼卡山脉和海峡群岛的三个岛屿)三个相互关联的营养水平上的群落组装过程。我们发现,多营养依赖的确定性效应在直接相关的营养水平上强于在间接相关的营养水平上(即花解释蜜蜂群落和蜜蜂解释蜜蜂肠道细菌群落,但花解释蜜蜂肠道细菌群落的变化弱)。我们还发现了显著的区域差异,海峡群岛的多营养依赖性较弱,因为生态漂变更为明显。我们的研究结果表明,整合多营养依赖对群落聚集的影响对于阐明β-多样性的驱动因素非常重要,并且多营养依赖可以由测量β-多样性的区域背景决定。综上所述,我们的研究结果强调了考虑多尺度视角的重要性-多营养和多区域-在群落组装中充分阐明组装过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multitrophic assembly influences β-diversity across a tripartite system of flowering plants, bees, and bee-gut microbiomes
Theoretical frameworks of terrestrial community assembly often focus on single trophic levels (e.g. plants) without considering how complex interdependencies across different trophic levels influence assembly mechanisms. Yet, when multiple trophic levels are considered (e.g. plant–pollinator, plant–microbe interactions) the focus is typically on network analyses at local spatial scales. As spatial variation in biodiversity (β-diversity) is increasingly being recognized for its relevance in understanding community assembly and conservation, considering how β-diversity at one trophic level may be influenced by assembly processes that alter abundance and composition of interacting communities at a different trophic level (multitrophic dependency) is critical. Here, we build on single trophic level community assembly frameworks to explore the assembly processes affecting β-diversity in multitrophic communities comprising flowering plants, their bee pollinators, and the corresponding bee-gut microbiota to better understand the importance of multitrophic dependency in community assembly. Using distance-based redundancy analysis and variation partitioning, we investigated community assembly processes across three interconnected trophic levels in two ecological regions in southern California: the Santa Monica Mountains and three islands of the Channel Island Archipelago. We found that the deterministic effects of multitrophic dependency are stronger on directly connected trophic levels than on indirectly connected trophic levels (i.e. flowers explain bee communities and bees explain bee-gut bacteria communities, but flowers weakly explain variation in bee-gut bacteria communities). We also found notable regional variation, where multitrophic dependency was weaker on the Channel Islands as ecological drift was more pronounced. Our results suggest that integrating the influence of multitrophic dependency on community assembly is important for elucidating drivers of β-diversity and that multitrophic dependency can be determined by the regional context in which β-diversity is measured. Taken together, our results highlight the importance of considering multiscale perspectives – both multitrophic and multiregional – in community assembly to fully elucidate assembly processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecography
Ecography 环境科学-生态学
CiteScore
11.60
自引率
3.40%
发文量
122
审稿时长
8-16 weeks
期刊介绍: ECOGRAPHY publishes exciting, novel, and important articles that significantly advance understanding of ecological or biodiversity patterns in space or time. Papers focusing on conservation or restoration are welcomed, provided they are anchored in ecological theory and convey a general message that goes beyond a single case study. We encourage papers that seek advancing the field through the development and testing of theory or methodology, or by proposing new tools for analysis or interpretation of ecological phenomena. Manuscripts are expected to address general principles in ecology, though they may do so using a specific model system if they adequately frame the problem relative to a generalized ecological question or problem. Purely descriptive papers are considered only if breaking new ground and/or describing patterns seldom explored. Studies focused on a single species or single location are generally discouraged unless they make a significant contribution to advancing general theory or understanding of biodiversity patterns and processes. Manuscripts merely confirming or marginally extending results of previous work are unlikely to be considered in Ecography. Papers are judged by virtue of their originality, appeal to general interest, and their contribution to new developments in studies of spatial and temporal ecological patterns. There are no biases with regard to taxon, biome, or biogeographical area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信