寻找理想的Li1+xTMO2无阳极锂金属电池正极材料

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tingting Xu, Kun Qin, Chunxi Tian, Liangdong Lin, Weiping Li, Liumin Suo
{"title":"寻找理想的Li1+xTMO2无阳极锂金属电池正极材料","authors":"Tingting Xu, Kun Qin, Chunxi Tian, Liangdong Lin, Weiping Li, Liumin Suo","doi":"10.1016/j.ensm.2024.103956","DOIUrl":null,"url":null,"abstract":"Anode-free lithium metal batteries push the energy density higher and minimize battery production costs as low as possible. However, the fast capacity decay impedes their commercial viability, primarily due to the lack of excessive Li from the anode to compensate for the irreversible lithium loss. Thus, the Li-rich NCM cathode is a feasible way to solve the issue. In this work, to search for the ideal Li<sub>1+x</sub>TMO<sub>2</sub> cathode for anode-free Li metal batteries, we selected the two types of commonly used layered cathode materials (LiTMO<sub>2</sub>: NCM622 and NCM811) to enrich Li converting into Li<sub>2</sub>TMO<sub>2</sub> by both chemical lithiation (C-Li) and electrochemical lithiation (E-Li) methods. Our findings show that the Li-rich NCM622 lithiated by the E-Li method is an ideal choice among our candidates, which has a high lithiation degree that almost covers the entire reversible transition range from Li<sub>1</sub> to Li<sub>2</sub> without additional by-products and a negative impact on kinetic performance. Based on the above results, we further demonstrated that the Li<sub>1.33</sub>NCM622|Cu pouch cell presents a longer cycle life of more than 200 times with a high capacity retention of 74%.","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"37 1","pages":""},"PeriodicalIF":18.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching for the Ideal Li1+xTMO2 Cathode for Anode-free Li Metal Batteries\",\"authors\":\"Tingting Xu, Kun Qin, Chunxi Tian, Liangdong Lin, Weiping Li, Liumin Suo\",\"doi\":\"10.1016/j.ensm.2024.103956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anode-free lithium metal batteries push the energy density higher and minimize battery production costs as low as possible. However, the fast capacity decay impedes their commercial viability, primarily due to the lack of excessive Li from the anode to compensate for the irreversible lithium loss. Thus, the Li-rich NCM cathode is a feasible way to solve the issue. In this work, to search for the ideal Li<sub>1+x</sub>TMO<sub>2</sub> cathode for anode-free Li metal batteries, we selected the two types of commonly used layered cathode materials (LiTMO<sub>2</sub>: NCM622 and NCM811) to enrich Li converting into Li<sub>2</sub>TMO<sub>2</sub> by both chemical lithiation (C-Li) and electrochemical lithiation (E-Li) methods. Our findings show that the Li-rich NCM622 lithiated by the E-Li method is an ideal choice among our candidates, which has a high lithiation degree that almost covers the entire reversible transition range from Li<sub>1</sub> to Li<sub>2</sub> without additional by-products and a negative impact on kinetic performance. Based on the above results, we further demonstrated that the Li<sub>1.33</sub>NCM622|Cu pouch cell presents a longer cycle life of more than 200 times with a high capacity retention of 74%.\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ensm.2024.103956\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ensm.2024.103956","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

无阳极锂金属电池可以提高能量密度,并尽可能降低电池生产成本。然而,快速的容量衰减阻碍了它们的商业可行性,主要是由于阳极缺乏过量的锂来补偿不可逆的锂损失。因此,富锂NCM阴极是解决这一问题的可行途径。为了寻找理想的Li1+xTMO2无阳极锂金属电池正极材料,我们选择了两种常用的层状正极材料(LiTMO2: NCM622和NCM811),通过化学锂化(C-Li)和电化学锂化(E-Li)两种方法来富集转化为Li2TMO2的锂。我们的研究结果表明,通过E-Li方法锂化的富锂NCM622是我们的候选材料中的理想选择,它具有高的锂化程度,几乎覆盖了从Li1到Li2的整个可逆转变范围,没有额外的副产物,并且对动力学性能没有负面影响。基于以上结果,我们进一步证明了Li1.33NCM622|Cu袋状电池具有超过200次的循环寿命和74%的高容量保留率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Searching for the Ideal Li1+xTMO2 Cathode for Anode-free Li Metal Batteries
Anode-free lithium metal batteries push the energy density higher and minimize battery production costs as low as possible. However, the fast capacity decay impedes their commercial viability, primarily due to the lack of excessive Li from the anode to compensate for the irreversible lithium loss. Thus, the Li-rich NCM cathode is a feasible way to solve the issue. In this work, to search for the ideal Li1+xTMO2 cathode for anode-free Li metal batteries, we selected the two types of commonly used layered cathode materials (LiTMO2: NCM622 and NCM811) to enrich Li converting into Li2TMO2 by both chemical lithiation (C-Li) and electrochemical lithiation (E-Li) methods. Our findings show that the Li-rich NCM622 lithiated by the E-Li method is an ideal choice among our candidates, which has a high lithiation degree that almost covers the entire reversible transition range from Li1 to Li2 without additional by-products and a negative impact on kinetic performance. Based on the above results, we further demonstrated that the Li1.33NCM622|Cu pouch cell presents a longer cycle life of more than 200 times with a high capacity retention of 74%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信