打破氧化物晶体管中迁移率与通断比之间的权衡

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yu-Cheng Chang, Sung-Tsun Wang, Yung-Ting Lee, Ching-Shuan Huang, Chu-Hsiu Hsu, Tzu-Ting Weng, Chang-Chang Huang, Chien-Wei Chen, Tsung-Te Chou, Chan-Yuen Chang, Wei-Yen Woon, Chun-Liang Lin, Jack Yuan-Chen Sun, Der-Hsien Lien
{"title":"打破氧化物晶体管中迁移率与通断比之间的权衡","authors":"Yu-Cheng Chang,&nbsp;Sung-Tsun Wang,&nbsp;Yung-Ting Lee,&nbsp;Ching-Shuan Huang,&nbsp;Chu-Hsiu Hsu,&nbsp;Tzu-Ting Weng,&nbsp;Chang-Chang Huang,&nbsp;Chien-Wei Chen,&nbsp;Tsung-Te Chou,&nbsp;Chan-Yuen Chang,&nbsp;Wei-Yen Woon,&nbsp;Chun-Liang Lin,&nbsp;Jack Yuan-Chen Sun,&nbsp;Der-Hsien Lien","doi":"10.1002/adma.202413212","DOIUrl":null,"url":null,"abstract":"<p>Amorphous oxide semiconductors (AOS) are pivotal for next-generation electronics due to their high electron mobility and excellent optical properties. However, In<sub>2</sub>O<sub>3</sub>, a key material in this family, encounters significant challenges in balancing high mobility and effective switching as its thickness is scaled down to nanometer dimensions. The high electron density in ultra-thin In<sub>2</sub>O<sub>3</sub> hinders its ability to turn off effectively, leading to a critical trade-off between mobility and the on-current (<i>I</i><sub>on</sub>)/off-current (<i>I</i><sub>off</sub>) ratio. This study introduces a mild CF<sub>4</sub> plasma doping technique that effectively reduces electron density in 10 nm In<sub>2</sub>O<sub>3</sub> at a low processing temperature of 70 °C, achieving a high mobility of 104 cm<sup>2</sup> V⁻¹ s⁻¹ and an <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> ratio exceeding 10⁸. A subsequent low-temperature post-annealing further improves the critical reliability and stability of CF<sub>4</sub>-doped In<sub>2</sub>O<sub>3</sub> without raising the thermal budget, making this technique suitable for monolithic three-dimensional (3D) integration. Additionally, its application is demonstrated in In<sub>2</sub>O<sub>3</sub> depletion-load inverters, highlighting its potential for advanced logic circuits and broader electronic and optoelectronic applications.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 5","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the Trade-Off Between Mobility and On–Off Ratio in Oxide Transistors\",\"authors\":\"Yu-Cheng Chang,&nbsp;Sung-Tsun Wang,&nbsp;Yung-Ting Lee,&nbsp;Ching-Shuan Huang,&nbsp;Chu-Hsiu Hsu,&nbsp;Tzu-Ting Weng,&nbsp;Chang-Chang Huang,&nbsp;Chien-Wei Chen,&nbsp;Tsung-Te Chou,&nbsp;Chan-Yuen Chang,&nbsp;Wei-Yen Woon,&nbsp;Chun-Liang Lin,&nbsp;Jack Yuan-Chen Sun,&nbsp;Der-Hsien Lien\",\"doi\":\"10.1002/adma.202413212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Amorphous oxide semiconductors (AOS) are pivotal for next-generation electronics due to their high electron mobility and excellent optical properties. However, In<sub>2</sub>O<sub>3</sub>, a key material in this family, encounters significant challenges in balancing high mobility and effective switching as its thickness is scaled down to nanometer dimensions. The high electron density in ultra-thin In<sub>2</sub>O<sub>3</sub> hinders its ability to turn off effectively, leading to a critical trade-off between mobility and the on-current (<i>I</i><sub>on</sub>)/off-current (<i>I</i><sub>off</sub>) ratio. This study introduces a mild CF<sub>4</sub> plasma doping technique that effectively reduces electron density in 10 nm In<sub>2</sub>O<sub>3</sub> at a low processing temperature of 70 °C, achieving a high mobility of 104 cm<sup>2</sup> V⁻¹ s⁻¹ and an <i>I</i><sub>on</sub>/<i>I</i><sub>off</sub> ratio exceeding 10⁸. A subsequent low-temperature post-annealing further improves the critical reliability and stability of CF<sub>4</sub>-doped In<sub>2</sub>O<sub>3</sub> without raising the thermal budget, making this technique suitable for monolithic three-dimensional (3D) integration. Additionally, its application is demonstrated in In<sub>2</sub>O<sub>3</sub> depletion-load inverters, highlighting its potential for advanced logic circuits and broader electronic and optoelectronic applications.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 5\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202413212\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202413212","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非晶氧化物半导体(AOS)由于其高电子迁移率和优异的光学性能而成为下一代电子器件的关键。然而,作为该家族的关键材料,随着其厚度缩小到纳米尺寸,在平衡高迁移率和有效开关方面面临着重大挑战。超薄In2O3中的高电子密度阻碍了其有效关闭的能力,导致迁移率和通流(Ion)/关流(Ioff)比之间的关键权衡。本研究介绍了一种温和的CF4等离子体掺杂技术,在70°C的低加工温度下,有效地降低了10nm In2O3中的电子密度,实现了104 cm2的高迁移率(V -⁻¹s -⁻)和超过10⁸的离子/ off比。随后的低温后退火进一步提高了cf4掺杂In2O3的临界可靠性和稳定性,而不增加热预算,使该技术适用于单片三维(3D)集成。此外,它的应用在In2O3耗尽负载逆变器中得到了证明,突出了它在高级逻辑电路和更广泛的电子和光电子应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Breaking the Trade-Off Between Mobility and On–Off Ratio in Oxide Transistors

Breaking the Trade-Off Between Mobility and On–Off Ratio in Oxide Transistors

Breaking the Trade-Off Between Mobility and On–Off Ratio in Oxide Transistors

Amorphous oxide semiconductors (AOS) are pivotal for next-generation electronics due to their high electron mobility and excellent optical properties. However, In2O3, a key material in this family, encounters significant challenges in balancing high mobility and effective switching as its thickness is scaled down to nanometer dimensions. The high electron density in ultra-thin In2O3 hinders its ability to turn off effectively, leading to a critical trade-off between mobility and the on-current (Ion)/off-current (Ioff) ratio. This study introduces a mild CF4 plasma doping technique that effectively reduces electron density in 10 nm In2O3 at a low processing temperature of 70 °C, achieving a high mobility of 104 cm2 V⁻¹ s⁻¹ and an Ion/Ioff ratio exceeding 10⁸. A subsequent low-temperature post-annealing further improves the critical reliability and stability of CF4-doped In2O3 without raising the thermal budget, making this technique suitable for monolithic three-dimensional (3D) integration. Additionally, its application is demonstrated in In2O3 depletion-load inverters, highlighting its potential for advanced logic circuits and broader electronic and optoelectronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信