通过磷化改性同时调节高性能富锂层状氧化物阴极的表面、界面和体积

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuhang Lou, Zedong Lin, Jialong Shen, Junpeng Sun, Nan Wang, Zhihao Chen, Rong Huang, Xianhong Rui, Xiaojun Wu, Hai Yang, Yan Yu
{"title":"通过磷化改性同时调节高性能富锂层状氧化物阴极的表面、界面和体积","authors":"Yuhang Lou,&nbsp;Zedong Lin,&nbsp;Jialong Shen,&nbsp;Junpeng Sun,&nbsp;Nan Wang,&nbsp;Zhihao Chen,&nbsp;Rong Huang,&nbsp;Xianhong Rui,&nbsp;Xiaojun Wu,&nbsp;Hai Yang,&nbsp;Yan Yu","doi":"10.1002/adma.202416136","DOIUrl":null,"url":null,"abstract":"<p>Li-rich Mn-based layered oxides (LRMOs) are regarded as the leading cathode materials to overcome the bottleneck of higher energy density. Nevertheless, they encounter significant challenges, including voltage decay, poor cycle stability, and inferior rate performance, primarily due to irreversible oxygen release, transition metal dissolution, and sluggish transport kinetics. Moreover, traditionally single modification strategies do not adequately address these issues. Herein, an innovative “all-in-one” modification strategy is developed, simultaneously regulating the surface, interface, and bulk via an in-situ gas–solid interface phosphating reaction to create P-doped Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub>@Spinel@Li<sub>3</sub>PO<sub>4</sub>. Specifically, Li<sub>3</sub>PO<sub>4</sub> surface coating layer shields particles from electrolyte corrosion and enhances Li<sup>+</sup> diffusion; in-situ constructed spinel interfacial layer reduces phase distortion and suppresses the lattice strain; the strong P─O bond derived from P-doping stabilizes the lattice oxygen frame and inhibits the release of O<sub>2</sub>, thereby improving the reversibility of oxygen redox reaction. As a result, the phosphatized LRMO demonstrates an exceptional capacity retention of 82.1% at 1C after 300 cycles (compared to 50.8% for LRMO), an outstanding rate capability of 170.5 mAh g<sup>−1</sup> at 5C (vs 98.9 mAh g<sup>−1</sup> for LRMO), along with excellent voltage maintenance and thermostability. Clearly, this “all-in-one” modification strategy offers a novel approach for high-energy-density lithium-ion batteries.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 6","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous Regulating the Surface, Interface, and Bulk via Phosphating Modification for High-Performance Li-Rich Layered Oxides Cathodes\",\"authors\":\"Yuhang Lou,&nbsp;Zedong Lin,&nbsp;Jialong Shen,&nbsp;Junpeng Sun,&nbsp;Nan Wang,&nbsp;Zhihao Chen,&nbsp;Rong Huang,&nbsp;Xianhong Rui,&nbsp;Xiaojun Wu,&nbsp;Hai Yang,&nbsp;Yan Yu\",\"doi\":\"10.1002/adma.202416136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Li-rich Mn-based layered oxides (LRMOs) are regarded as the leading cathode materials to overcome the bottleneck of higher energy density. Nevertheless, they encounter significant challenges, including voltage decay, poor cycle stability, and inferior rate performance, primarily due to irreversible oxygen release, transition metal dissolution, and sluggish transport kinetics. Moreover, traditionally single modification strategies do not adequately address these issues. Herein, an innovative “all-in-one” modification strategy is developed, simultaneously regulating the surface, interface, and bulk via an in-situ gas–solid interface phosphating reaction to create P-doped Li<sub>1.2</sub>Mn<sub>0.54</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>O<sub>2</sub>@Spinel@Li<sub>3</sub>PO<sub>4</sub>. Specifically, Li<sub>3</sub>PO<sub>4</sub> surface coating layer shields particles from electrolyte corrosion and enhances Li<sup>+</sup> diffusion; in-situ constructed spinel interfacial layer reduces phase distortion and suppresses the lattice strain; the strong P─O bond derived from P-doping stabilizes the lattice oxygen frame and inhibits the release of O<sub>2</sub>, thereby improving the reversibility of oxygen redox reaction. As a result, the phosphatized LRMO demonstrates an exceptional capacity retention of 82.1% at 1C after 300 cycles (compared to 50.8% for LRMO), an outstanding rate capability of 170.5 mAh g<sup>−1</sup> at 5C (vs 98.9 mAh g<sup>−1</sup> for LRMO), along with excellent voltage maintenance and thermostability. Clearly, this “all-in-one” modification strategy offers a novel approach for high-energy-density lithium-ion batteries.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"37 6\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202416136\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202416136","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

富锂锰基层状氧化物(LRMOs)被认为是克服高能量密度瓶颈的主要正极材料。然而,它们面临着巨大的挑战,包括电压衰减、循环稳定性差、速率性能差,主要是由于不可逆的氧释放、过渡金属溶解和缓慢的运输动力学。此外,传统的单一修改策略不能充分解决这些问题。本文开发了一种创新的“一体化”改性策略,通过原位气固界面磷化反应同时调节表面、界面和体积,以制备p掺杂Li1.2Mn0.54Ni0.13Co0.13O2@Spinel@Li3PO4。具体来说,Li3PO4表面涂层保护颗粒免受电解质腐蚀,增强Li+扩散;原位构建尖晶石界面层减少了相畸变,抑制了晶格应变;P掺杂形成的强P─O键稳定了晶格氧框架,抑制了O2的释放,从而提高了氧氧化还原反应的可逆性。结果,经过300次循环后,磷酸化的LRMO在1C下的容量保持率为82.1%(相比之下,LRMO为50.8%),在5C下具有170.5 mAh g - 1的出色倍率容量(相比之下,LRMO为98.9 mAh g - 1),以及出色的电压维护和热稳定性。显然,这种“一体化”的改进策略为高能量密度锂离子电池提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous Regulating the Surface, Interface, and Bulk via Phosphating Modification for High-Performance Li-Rich Layered Oxides Cathodes

Simultaneous Regulating the Surface, Interface, and Bulk via Phosphating Modification for High-Performance Li-Rich Layered Oxides Cathodes

Li-rich Mn-based layered oxides (LRMOs) are regarded as the leading cathode materials to overcome the bottleneck of higher energy density. Nevertheless, they encounter significant challenges, including voltage decay, poor cycle stability, and inferior rate performance, primarily due to irreversible oxygen release, transition metal dissolution, and sluggish transport kinetics. Moreover, traditionally single modification strategies do not adequately address these issues. Herein, an innovative “all-in-one” modification strategy is developed, simultaneously regulating the surface, interface, and bulk via an in-situ gas–solid interface phosphating reaction to create P-doped Li1.2Mn0.54Ni0.13Co0.13O2@Spinel@Li3PO4. Specifically, Li3PO4 surface coating layer shields particles from electrolyte corrosion and enhances Li+ diffusion; in-situ constructed spinel interfacial layer reduces phase distortion and suppresses the lattice strain; the strong P─O bond derived from P-doping stabilizes the lattice oxygen frame and inhibits the release of O2, thereby improving the reversibility of oxygen redox reaction. As a result, the phosphatized LRMO demonstrates an exceptional capacity retention of 82.1% at 1C after 300 cycles (compared to 50.8% for LRMO), an outstanding rate capability of 170.5 mAh g−1 at 5C (vs 98.9 mAh g−1 for LRMO), along with excellent voltage maintenance and thermostability. Clearly, this “all-in-one” modification strategy offers a novel approach for high-energy-density lithium-ion batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信