光驱动合成氨的镍兰氏固氮菌体内半导体纳米颗粒合成

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-12-10 DOI:10.1039/D4NR02177K
Gui-Min Kim, Yoojin Choi, Kyeong Rok Choi, Ilsong Lee, Jayeong Kim, Byunghyun Lee, Sang Yup Lee and Doh C. Lee
{"title":"光驱动合成氨的镍兰氏固氮菌体内半导体纳米颗粒合成","authors":"Gui-Min Kim, Yoojin Choi, Kyeong Rok Choi, Ilsong Lee, Jayeong Kim, Byunghyun Lee, Sang Yup Lee and Doh C. Lee","doi":"10.1039/D4NR02177K","DOIUrl":null,"url":null,"abstract":"<p >Ammonia (NH<small><sub>3</sub></small>) is an important commodity chemical used as an agricultural fertilizer and hydrogen-storage material. There has recently been much interest in developing an environmentally benign process for NH<small><sub>3</sub></small> synthesis. Here, we report enhanced production of ammonia from diazotrophs under light irradiation using hybrid composites of inorganic nanoparticles (NPs) and bacterial cells. The primary focus of this study lies in the intracellular biosynthesis of semiconductor NPs within <em>Azotobacter vinelandii</em>, a diazotroph, when bacterial cells are cultured in a medium containing precursor molecules. For example, enzymes in bacterial cells, such as cysteine desulfurase, convert cysteine (Cys) into precursors for cadmium sulfide (CdS) synthesis when supplied with CdCl<small><sub>2</sub></small>. Photoexcited charge carriers in the biosynthesized NPs are transferred to nitrogen fixation enzymes, <em>e.g.</em>, nitrogenase, facilitating the production of ammonium ions. Notably, the intracellular biosynthesis approach minimizes cell toxicity compared to extracellular synthesis due to the diminished generation of reactive oxygen species. The biohybrid system based on the <em>in vivo</em> approach results in a fivefold increase in ammonia production (0.45 mg g<small><sub>DCW</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>) compared to the case of diazotroph cells only (0.09 mg g<small><sub>DCW</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>).</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 6","pages":" 3381-3388"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In vivo synthesis of semiconductor nanoparticles in Azotobacter vinelandii for light-driven ammonia production†\",\"authors\":\"Gui-Min Kim, Yoojin Choi, Kyeong Rok Choi, Ilsong Lee, Jayeong Kim, Byunghyun Lee, Sang Yup Lee and Doh C. Lee\",\"doi\":\"10.1039/D4NR02177K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ammonia (NH<small><sub>3</sub></small>) is an important commodity chemical used as an agricultural fertilizer and hydrogen-storage material. There has recently been much interest in developing an environmentally benign process for NH<small><sub>3</sub></small> synthesis. Here, we report enhanced production of ammonia from diazotrophs under light irradiation using hybrid composites of inorganic nanoparticles (NPs) and bacterial cells. The primary focus of this study lies in the intracellular biosynthesis of semiconductor NPs within <em>Azotobacter vinelandii</em>, a diazotroph, when bacterial cells are cultured in a medium containing precursor molecules. For example, enzymes in bacterial cells, such as cysteine desulfurase, convert cysteine (Cys) into precursors for cadmium sulfide (CdS) synthesis when supplied with CdCl<small><sub>2</sub></small>. Photoexcited charge carriers in the biosynthesized NPs are transferred to nitrogen fixation enzymes, <em>e.g.</em>, nitrogenase, facilitating the production of ammonium ions. Notably, the intracellular biosynthesis approach minimizes cell toxicity compared to extracellular synthesis due to the diminished generation of reactive oxygen species. The biohybrid system based on the <em>in vivo</em> approach results in a fivefold increase in ammonia production (0.45 mg g<small><sub>DCW</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>) compared to the case of diazotroph cells only (0.09 mg g<small><sub>DCW</sub></small><small><sup>−1</sup></small> h<small><sup>−1</sup></small>).</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 6\",\"pages\":\" 3381-3388\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr02177k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr02177k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氨(NH3)是一种重要的商品化学品,用作农业肥料和储氢材料。最近,人们对开发一种对环境无害的氨合成工艺非常感兴趣。在这里,我们报道了利用无机纳米颗粒(NPs)和细菌细胞的杂化复合材料在光照下增强重氮营养盐氨的生产。本研究的主要重点在于,当细菌细胞在含有前体分子的培养基中培养时,在重氮营养菌(Azotobacter vinelandii)中细胞内半导体NPs的生物合成。例如,细菌细胞中的酶,如半胱氨酸脱硫酶,在提供CdCl2的情况下,将半胱氨酸(Cys)转化为合成硫化镉(CdS)的前体。生物合成NPs中的光激发载流子被转移到固氮酶,如固氮酶,促进铵离子的产生。值得注意的是,由于活性氧的产生减少,与细胞外合成相比,细胞内生物合成方法最大限度地减少了细胞毒性。基于体内方法的生物杂交系统的氨产量(0.45 mg gDCW-1 h-1)比仅重氮营养细胞的情况(0.09 mg gDCW-1 h-1)增加了5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In vivo synthesis of semiconductor nanoparticles in Azotobacter vinelandii for light-driven ammonia production†

In vivo synthesis of semiconductor nanoparticles in Azotobacter vinelandii for light-driven ammonia production†

Ammonia (NH3) is an important commodity chemical used as an agricultural fertilizer and hydrogen-storage material. There has recently been much interest in developing an environmentally benign process for NH3 synthesis. Here, we report enhanced production of ammonia from diazotrophs under light irradiation using hybrid composites of inorganic nanoparticles (NPs) and bacterial cells. The primary focus of this study lies in the intracellular biosynthesis of semiconductor NPs within Azotobacter vinelandii, a diazotroph, when bacterial cells are cultured in a medium containing precursor molecules. For example, enzymes in bacterial cells, such as cysteine desulfurase, convert cysteine (Cys) into precursors for cadmium sulfide (CdS) synthesis when supplied with CdCl2. Photoexcited charge carriers in the biosynthesized NPs are transferred to nitrogen fixation enzymes, e.g., nitrogenase, facilitating the production of ammonium ions. Notably, the intracellular biosynthesis approach minimizes cell toxicity compared to extracellular synthesis due to the diminished generation of reactive oxygen species. The biohybrid system based on the in vivo approach results in a fivefold increase in ammonia production (0.45 mg gDCW−1 h−1) compared to the case of diazotroph cells only (0.09 mg gDCW−1 h−1).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信