利用 XLuminA 自动发现超分辨率显微镜中的实验设计

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Carla Rodríguez, Sören Arlt, Leonhard Möckl, Mario Krenn
{"title":"利用 XLuminA 自动发现超分辨率显微镜中的实验设计","authors":"Carla Rodríguez, Sören Arlt, Leonhard Möckl, Mario Krenn","doi":"10.1038/s41467-024-54696-y","DOIUrl":null,"url":null,"abstract":"<p>Driven by human ingenuity and creativity, the discovery of super-resolution techniques, which circumvent the classical diffraction limit of light, represent a leap in optical microscopy. However, the vast space encompassing all possible experimental configurations suggests that some powerful concepts and techniques might have not been discovered yet, and might never be with a human-driven direct design approach. Thus, AI-based exploration techniques could provide enormous benefit, by exploring this space in a fast, unbiased way. We introduce XLuminA, an open-source computational framework developed using JAX, a high-performance computing library in Python. XLuminA offers enhanced computational speed enabled by JAX’s accelerated linear algebra compiler (XLA), just-in-time compilation, and its seamlessly integrated automatic vectorization, automatic differentiation capabilities and GPU compatibility. XLuminA demonstrates a speed-up of 4 orders of magnitude compared to well-established numerical optimization methods. We showcase XLuminA’s potential by re-discovering three foundational experiments in advanced microscopy, and identifying an unseen experimental blueprint featuring sub-diffraction imaging capabilities. This work constitutes an important step in AI-driven scientific discovery of new concepts in optics and advanced microscopy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"2 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated discovery of experimental designs in super-resolution microscopy with XLuminA\",\"authors\":\"Carla Rodríguez, Sören Arlt, Leonhard Möckl, Mario Krenn\",\"doi\":\"10.1038/s41467-024-54696-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Driven by human ingenuity and creativity, the discovery of super-resolution techniques, which circumvent the classical diffraction limit of light, represent a leap in optical microscopy. However, the vast space encompassing all possible experimental configurations suggests that some powerful concepts and techniques might have not been discovered yet, and might never be with a human-driven direct design approach. Thus, AI-based exploration techniques could provide enormous benefit, by exploring this space in a fast, unbiased way. We introduce XLuminA, an open-source computational framework developed using JAX, a high-performance computing library in Python. XLuminA offers enhanced computational speed enabled by JAX’s accelerated linear algebra compiler (XLA), just-in-time compilation, and its seamlessly integrated automatic vectorization, automatic differentiation capabilities and GPU compatibility. XLuminA demonstrates a speed-up of 4 orders of magnitude compared to well-established numerical optimization methods. We showcase XLuminA’s potential by re-discovering three foundational experiments in advanced microscopy, and identifying an unseen experimental blueprint featuring sub-diffraction imaging capabilities. This work constitutes an important step in AI-driven scientific discovery of new concepts in optics and advanced microscopy.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-54696-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54696-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在人类的聪明才智和创造力的推动下,超分辨率技术的发现绕过了经典的光的衍射极限,代表了光学显微镜的飞跃。然而,包含所有可能的实验配置的广阔空间表明,一些强大的概念和技术可能尚未被发现,并且可能永远不会使用人类驱动的直接设计方法。因此,基于人工智能的探索技术可以提供巨大的好处,通过快速,公正的方式探索这个空间。我们将介绍XLuminA,这是一个使用Python中的高性能计算库JAX开发的开源计算框架。XLuminA通过JAX的加速线性代数编译器(XLA)、即时编译以及无缝集成的自动矢量化、自动微分功能和GPU兼容性提供了增强的计算速度。与成熟的数值优化方法相比,XLuminA的速度提高了4个数量级。我们展示了XLuminA的潜力,通过重新发现三个基础实验在先进的显微镜,并确定了一个看不见的实验蓝图,具有亚衍射成像能力。这项工作是人工智能驱动的光学和高级显微镜新概念科学发现的重要一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated discovery of experimental designs in super-resolution microscopy with XLuminA

Automated discovery of experimental designs in super-resolution microscopy with XLuminA

Driven by human ingenuity and creativity, the discovery of super-resolution techniques, which circumvent the classical diffraction limit of light, represent a leap in optical microscopy. However, the vast space encompassing all possible experimental configurations suggests that some powerful concepts and techniques might have not been discovered yet, and might never be with a human-driven direct design approach. Thus, AI-based exploration techniques could provide enormous benefit, by exploring this space in a fast, unbiased way. We introduce XLuminA, an open-source computational framework developed using JAX, a high-performance computing library in Python. XLuminA offers enhanced computational speed enabled by JAX’s accelerated linear algebra compiler (XLA), just-in-time compilation, and its seamlessly integrated automatic vectorization, automatic differentiation capabilities and GPU compatibility. XLuminA demonstrates a speed-up of 4 orders of magnitude compared to well-established numerical optimization methods. We showcase XLuminA’s potential by re-discovering three foundational experiments in advanced microscopy, and identifying an unseen experimental blueprint featuring sub-diffraction imaging capabilities. This work constitutes an important step in AI-driven scientific discovery of new concepts in optics and advanced microscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信