基于前列腺影像报告与数据系统2.1版的前列腺癌临床诊断预测模型

IF 3.7 2区 医学 Q1 UROLOGY & NEPHROLOGY
David G. Gelikman, William S. Azar, Enis C. Yilmaz, Yue Lin, Luke A. Shumaker, Andrew M. Fang, Stephanie A. Harmon, Erich P. Huang, Sahil H. Parikh, Jason A. Hyman, Kyle Schuppe, Jeffrey W. Nix, Samuel J. Galgano, Maria J. Merino, Peter L. Choyke, Sandeep Gurram, Bradford J. Wood, Soroush Rais-Bahrami, Peter A. Pinto, Baris Turkbey
{"title":"基于前列腺影像报告与数据系统2.1版的前列腺癌临床诊断预测模型","authors":"David G. Gelikman, William S. Azar, Enis C. Yilmaz, Yue Lin, Luke A. Shumaker, Andrew M. Fang, Stephanie A. Harmon, Erich P. Huang, Sahil H. Parikh, Jason A. Hyman, Kyle Schuppe, Jeffrey W. Nix, Samuel J. Galgano, Maria J. Merino, Peter L. Choyke, Sandeep Gurram, Bradford J. Wood, Soroush Rais-Bahrami, Peter A. Pinto, Baris Turkbey","doi":"10.1111/bju.16616","DOIUrl":null,"url":null,"abstract":"To develop and validate a Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 (v2.1)-based predictive model for diagnosis of clinically significant prostate cancer (csPCa), integrating clinical and multiparametric magnetic resonance imaging (mpMRI) data, and compare its performance with existing models.","PeriodicalId":8985,"journal":{"name":"BJU International","volume":"20 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prostate Imaging-Reporting and Data System version 2.1-based predictive model for clinically significant prostate cancer diagnosis\",\"authors\":\"David G. Gelikman, William S. Azar, Enis C. Yilmaz, Yue Lin, Luke A. Shumaker, Andrew M. Fang, Stephanie A. Harmon, Erich P. Huang, Sahil H. Parikh, Jason A. Hyman, Kyle Schuppe, Jeffrey W. Nix, Samuel J. Galgano, Maria J. Merino, Peter L. Choyke, Sandeep Gurram, Bradford J. Wood, Soroush Rais-Bahrami, Peter A. Pinto, Baris Turkbey\",\"doi\":\"10.1111/bju.16616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop and validate a Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 (v2.1)-based predictive model for diagnosis of clinically significant prostate cancer (csPCa), integrating clinical and multiparametric magnetic resonance imaging (mpMRI) data, and compare its performance with existing models.\",\"PeriodicalId\":8985,\"journal\":{\"name\":\"BJU International\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BJU International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bju.16616\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJU International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bju.16616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

结合临床和多参数磁共振成像(mpMRI)数据,开发并验证基于PI-RADS 2.1版本(v2.1)的临床显著性前列腺癌(csPCa)诊断预测模型,并将其性能与现有模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Prostate Imaging-Reporting and Data System version 2.1-based predictive model for clinically significant prostate cancer diagnosis
To develop and validate a Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 (v2.1)-based predictive model for diagnosis of clinically significant prostate cancer (csPCa), integrating clinical and multiparametric magnetic resonance imaging (mpMRI) data, and compare its performance with existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BJU International
BJU International 医学-泌尿学与肾脏学
CiteScore
9.10
自引率
4.40%
发文量
262
审稿时长
1 months
期刊介绍: BJUI is one of the most highly respected medical journals in the world, with a truly international range of published papers and appeal. Every issue gives invaluable practical information in the form of original articles, reviews, comments, surgical education articles, and translational science articles in the field of urology. BJUI employs topical sections, and is in full colour, making it easier to browse or search for something specific.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信