David G. Gelikman, William S. Azar, Enis C. Yilmaz, Yue Lin, Luke A. Shumaker, Andrew M. Fang, Stephanie A. Harmon, Erich P. Huang, Sahil H. Parikh, Jason A. Hyman, Kyle Schuppe, Jeffrey W. Nix, Samuel J. Galgano, Maria J. Merino, Peter L. Choyke, Sandeep Gurram, Bradford J. Wood, Soroush Rais-Bahrami, Peter A. Pinto, Baris Turkbey
{"title":"基于前列腺影像报告与数据系统2.1版的前列腺癌临床诊断预测模型","authors":"David G. Gelikman, William S. Azar, Enis C. Yilmaz, Yue Lin, Luke A. Shumaker, Andrew M. Fang, Stephanie A. Harmon, Erich P. Huang, Sahil H. Parikh, Jason A. Hyman, Kyle Schuppe, Jeffrey W. Nix, Samuel J. Galgano, Maria J. Merino, Peter L. Choyke, Sandeep Gurram, Bradford J. Wood, Soroush Rais-Bahrami, Peter A. Pinto, Baris Turkbey","doi":"10.1111/bju.16616","DOIUrl":null,"url":null,"abstract":"To develop and validate a Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 (v2.1)-based predictive model for diagnosis of clinically significant prostate cancer (csPCa), integrating clinical and multiparametric magnetic resonance imaging (mpMRI) data, and compare its performance with existing models.","PeriodicalId":8985,"journal":{"name":"BJU International","volume":"20 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prostate Imaging-Reporting and Data System version 2.1-based predictive model for clinically significant prostate cancer diagnosis\",\"authors\":\"David G. Gelikman, William S. Azar, Enis C. Yilmaz, Yue Lin, Luke A. Shumaker, Andrew M. Fang, Stephanie A. Harmon, Erich P. Huang, Sahil H. Parikh, Jason A. Hyman, Kyle Schuppe, Jeffrey W. Nix, Samuel J. Galgano, Maria J. Merino, Peter L. Choyke, Sandeep Gurram, Bradford J. Wood, Soroush Rais-Bahrami, Peter A. Pinto, Baris Turkbey\",\"doi\":\"10.1111/bju.16616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To develop and validate a Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 (v2.1)-based predictive model for diagnosis of clinically significant prostate cancer (csPCa), integrating clinical and multiparametric magnetic resonance imaging (mpMRI) data, and compare its performance with existing models.\",\"PeriodicalId\":8985,\"journal\":{\"name\":\"BJU International\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BJU International\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/bju.16616\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BJU International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/bju.16616","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
A Prostate Imaging-Reporting and Data System version 2.1-based predictive model for clinically significant prostate cancer diagnosis
To develop and validate a Prostate Imaging-Reporting and Data System (PI-RADS) version 2.1 (v2.1)-based predictive model for diagnosis of clinically significant prostate cancer (csPCa), integrating clinical and multiparametric magnetic resonance imaging (mpMRI) data, and compare its performance with existing models.
期刊介绍:
BJUI is one of the most highly respected medical journals in the world, with a truly international range of published papers and appeal. Every issue gives invaluable practical information in the form of original articles, reviews, comments, surgical education articles, and translational science articles in the field of urology. BJUI employs topical sections, and is in full colour, making it easier to browse or search for something specific.