空间约束和1T-MoS2原位还原Pt在模拟海水中异常析氢反应

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mengyao Li, Jie Min, Yixuan Huang, Linghui Meng, Zekun Dong, Shuangyue Wang, Tao Wan, Peiyuan Guan, Long Hu, Yingze Zhou, Zhaojun Han, Bingjie Ni, Dewei Chu
{"title":"空间约束和1T-MoS2原位还原Pt在模拟海水中异常析氢反应","authors":"Mengyao Li, Jie Min, Yixuan Huang, Linghui Meng, Zekun Dong, Shuangyue Wang, Tao Wan, Peiyuan Guan, Long Hu, Yingze Zhou, Zhaojun Han, Bingjie Ni, Dewei Chu","doi":"10.1021/acsami.4c13270","DOIUrl":null,"url":null,"abstract":"Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS<sub>2</sub> nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS<sub>2</sub> nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS<sub>2</sub> and the confinement of Pt nanoparticles within the MoS<sub>2</sub> interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"234 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater\",\"authors\":\"Mengyao Li, Jie Min, Yixuan Huang, Linghui Meng, Zekun Dong, Shuangyue Wang, Tao Wan, Peiyuan Guan, Long Hu, Yingze Zhou, Zhaojun Han, Bingjie Ni, Dewei Chu\",\"doi\":\"10.1021/acsami.4c13270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS<sub>2</sub> nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS<sub>2</sub> nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS<sub>2</sub> and the confinement of Pt nanoparticles within the MoS<sub>2</sub> interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c13270\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c13270","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

海水制氢的高效催化剂对于推进清洁能源技术至关重要。在这项研究中,我们提出了一种直接的方法,将铂纳米颗粒包裹在石墨纸上的金属1t相MoS2纳米片中,作为析氢反应(HER)的有前途的催化剂。所得的14.3 wt % Pt- mos2纳米片与可逆氢电极(RHE)相比,具有65.6 mV的超低起爆电位和64 mV/dec的最小Tafel斜率,在模拟海水中具有卓越的稳定性和耐久性,其催化性能与40 wt % Pt/C商用催化剂相当,成本更低。这种特殊的氢气生成归因于1t相MoS2的强大还原能力以及在MoS2中间层和纳米片内的Pt纳米颗粒的限制。我们的研究结果强调了这种方法在开发实用和可持续的海水分裂电催化剂方面的重要性。这项研究代表了迈向更绿色、更可持续的未来的关键一步,利用创新的催化剂设计策略来生产清洁能源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater

Space-Confinement and in Situ Reduction of Pt with 1T-MoS2 for Exceptional Hydrogen Evolution Reaction in Simulated Seawater
Efficient catalysts for hydrogen generation from seawater are essential for advancing clean energy technologies. In this study, we present a straightforward method for producing Pt nanoparticles enclosed within metallic 1T-phase MoS2 nanosheets on graphite paper as a promising catalyst for the hydrogen evolution reaction (HER). The resulting 14.3 wt % Pt-MoS2 nanosheets demonstrate an ultralow onset potential of 65.6 mV vs the reversible hydrogen electrode (RHE) and a minimal Tafel slope of 64 mV/dec with remarkable stability and durability in simulated seawater, offering comparable catalytic performance to the 40 wt % Pt/C commercial catalyst at a lower cost. This exceptional hydrogen production is attributed to the robust reducing ability of 1T-phase MoS2 and the confinement of Pt nanoparticles within the MoS2 interlayers and nanosheets. Our findings highlight the significance of this approach in developing practical and sustainable electrocatalysts for seawater splitting. This research represents a crucial step toward a greener and more sustainable future, leveraging innovative catalyst design strategies for clean energy production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信