水成膜泡沫(AFFF)改良土壤微生态系统中 15 类全氟化烷基和多氟化烷基物质的命运与转化

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Sheng Dong, Peng-Fei Yan, Katherine E. Manz, Linda M. Abriola, Kurt D. Pennell, Natalie L. Cápiro
{"title":"水成膜泡沫(AFFF)改良土壤微生态系统中 15 类全氟化烷基和多氟化烷基物质的命运与转化","authors":"Sheng Dong, Peng-Fei Yan, Katherine E. Manz, Linda M. Abriola, Kurt D. Pennell, Natalie L. Cápiro","doi":"10.1021/acs.est.4c08665","DOIUrl":null,"url":null,"abstract":"The environmental fate of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foams (AFFFs), especially those synthesized by electrochemical fluorination (ECF) processes, remains largely unknown. This study evaluated the transformation of AFFF-derived ECF-based precursors in aerobic soil microcosms amended with a historically used AFFF formulation (3M Light Water<sup>TM</sup>). Fifteen classes of PFAS, including AFFF components and transformation products, were identified or tentatively identified by suspect screening/nontargeted analysis (SSA/NTA) throughout a 308-day incubation. This study demonstrates that AFFF-derived ECF-based precursors serve as sources of perfluoroalkane sulfonamides (FASAs) and perfluoroalkyl acids (PFAAs), which are commonly detected at AFFF-impacted sites. Temporal sampling provided evidence for biotransformation of multiple precursors including tri- or dimethyl ammonio propyl perfluoroalkane sulfonamides. Additionally, the environmental stability (i.e., resistance to transformation) of ECF-based precursors was found to depend upon structural characteristics, including perfluoroalkyl chain length, presence of sulfonamide or carboxamide groups, and functional groups (e.g., a branch of carboxyalkyl group) attached to the nitrogen atoms. These findings provide insights into the transformation pathways of AFFF-derived PFAS and other structurally similar ECF-based PFAS, which will support the management and remediation of PFAS contamination at legacy AFFF-impacted sites.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"234 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fate and Transformation of 15 Classes of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam (AFFF)-Amended Soil Microcosms\",\"authors\":\"Sheng Dong, Peng-Fei Yan, Katherine E. Manz, Linda M. Abriola, Kurt D. Pennell, Natalie L. Cápiro\",\"doi\":\"10.1021/acs.est.4c08665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The environmental fate of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foams (AFFFs), especially those synthesized by electrochemical fluorination (ECF) processes, remains largely unknown. This study evaluated the transformation of AFFF-derived ECF-based precursors in aerobic soil microcosms amended with a historically used AFFF formulation (3M Light Water<sup>TM</sup>). Fifteen classes of PFAS, including AFFF components and transformation products, were identified or tentatively identified by suspect screening/nontargeted analysis (SSA/NTA) throughout a 308-day incubation. This study demonstrates that AFFF-derived ECF-based precursors serve as sources of perfluoroalkane sulfonamides (FASAs) and perfluoroalkyl acids (PFAAs), which are commonly detected at AFFF-impacted sites. Temporal sampling provided evidence for biotransformation of multiple precursors including tri- or dimethyl ammonio propyl perfluoroalkane sulfonamides. Additionally, the environmental stability (i.e., resistance to transformation) of ECF-based precursors was found to depend upon structural characteristics, including perfluoroalkyl chain length, presence of sulfonamide or carboxamide groups, and functional groups (e.g., a branch of carboxyalkyl group) attached to the nitrogen atoms. These findings provide insights into the transformation pathways of AFFF-derived PFAS and other structurally similar ECF-based PFAS, which will support the management and remediation of PFAS contamination at legacy AFFF-impacted sites.\",\"PeriodicalId\":36,\"journal\":{\"name\":\"环境科学与技术\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"环境科学与技术\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.est.4c08665\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08665","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fate and Transformation of 15 Classes of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam (AFFF)-Amended Soil Microcosms

Fate and Transformation of 15 Classes of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foam (AFFF)-Amended Soil Microcosms
The environmental fate of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foams (AFFFs), especially those synthesized by electrochemical fluorination (ECF) processes, remains largely unknown. This study evaluated the transformation of AFFF-derived ECF-based precursors in aerobic soil microcosms amended with a historically used AFFF formulation (3M Light WaterTM). Fifteen classes of PFAS, including AFFF components and transformation products, were identified or tentatively identified by suspect screening/nontargeted analysis (SSA/NTA) throughout a 308-day incubation. This study demonstrates that AFFF-derived ECF-based precursors serve as sources of perfluoroalkane sulfonamides (FASAs) and perfluoroalkyl acids (PFAAs), which are commonly detected at AFFF-impacted sites. Temporal sampling provided evidence for biotransformation of multiple precursors including tri- or dimethyl ammonio propyl perfluoroalkane sulfonamides. Additionally, the environmental stability (i.e., resistance to transformation) of ECF-based precursors was found to depend upon structural characteristics, including perfluoroalkyl chain length, presence of sulfonamide or carboxamide groups, and functional groups (e.g., a branch of carboxyalkyl group) attached to the nitrogen atoms. These findings provide insights into the transformation pathways of AFFF-derived PFAS and other structurally similar ECF-based PFAS, which will support the management and remediation of PFAS contamination at legacy AFFF-impacted sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信