E. García-Gómez , R. Gil-Solsona , E. Mikkolainen , M. Hytti , E. Ytreberg , P. Gago-Ferrero , M. Petrović , M. Gros
{"title":"利用LC-HRMS综合目标和可疑筛选方法识别船舶排放的灰水中新出现的污染物。","authors":"E. García-Gómez , R. Gil-Solsona , E. Mikkolainen , M. Hytti , E. Ytreberg , P. Gago-Ferrero , M. Petrović , M. Gros","doi":"10.1016/j.envpol.2024.125524","DOIUrl":null,"url":null,"abstract":"<div><div>The increase in maritime traffic has led to substantial greywater discharges into the marine environment. Greywater, originating from sinks, showers, kitchen, and laundry facilities, contains a wide array of chemical contaminants influenced by on-board activities, ship size, and management practices. The lack of comprehensive regulations for greywater management, along with limited research on its chemical composition, highlights the need to characterize these waste streams. This study is one of the first to provide a comprehensive characterization of greywater samples from ships using advanced liquid chromatography coupled to high-resolution-mass-spectrometry (LC-HRMS) strategies, including wide-scope target and suspect screening. The target analysis detected 86 compounds, such as pharmaceuticals, stimulants, tobacco and food-related products, personal care products, UV filters, surfactants, perfluoroalkyl compounds, plasticizers, and flame retardants, many of which are rarely measured in routine monitoring programs. Furthermore, 11 additional compounds were tentatively identified through suspect screening. A novel scoring system further highlighted 25 priority compounds posing ecological risks to marine ecosystems, including pharmaceuticals such as tapentadol, dextrorphan, citalopram, or irbesartan. This study emphasizes the significant introduction of chemicals at μg L<sup>−1</sup> levels through greywater discharges, underscoring the urgent need for improved management practices to mitigate ecological risks to the marine ecosystem.</div></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"366 ","pages":"Article 125524"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of emerging contaminants in greywater emitted from ships by a comprehensive LC-HRMS target and suspect screening approach\",\"authors\":\"E. García-Gómez , R. Gil-Solsona , E. Mikkolainen , M. Hytti , E. Ytreberg , P. Gago-Ferrero , M. Petrović , M. Gros\",\"doi\":\"10.1016/j.envpol.2024.125524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increase in maritime traffic has led to substantial greywater discharges into the marine environment. Greywater, originating from sinks, showers, kitchen, and laundry facilities, contains a wide array of chemical contaminants influenced by on-board activities, ship size, and management practices. The lack of comprehensive regulations for greywater management, along with limited research on its chemical composition, highlights the need to characterize these waste streams. This study is one of the first to provide a comprehensive characterization of greywater samples from ships using advanced liquid chromatography coupled to high-resolution-mass-spectrometry (LC-HRMS) strategies, including wide-scope target and suspect screening. The target analysis detected 86 compounds, such as pharmaceuticals, stimulants, tobacco and food-related products, personal care products, UV filters, surfactants, perfluoroalkyl compounds, plasticizers, and flame retardants, many of which are rarely measured in routine monitoring programs. Furthermore, 11 additional compounds were tentatively identified through suspect screening. A novel scoring system further highlighted 25 priority compounds posing ecological risks to marine ecosystems, including pharmaceuticals such as tapentadol, dextrorphan, citalopram, or irbesartan. This study emphasizes the significant introduction of chemicals at μg L<sup>−1</sup> levels through greywater discharges, underscoring the urgent need for improved management practices to mitigate ecological risks to the marine ecosystem.</div></div>\",\"PeriodicalId\":311,\"journal\":{\"name\":\"Environmental Pollution\",\"volume\":\"366 \",\"pages\":\"Article 125524\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Pollution\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0269749124022413\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0269749124022413","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Identification of emerging contaminants in greywater emitted from ships by a comprehensive LC-HRMS target and suspect screening approach
The increase in maritime traffic has led to substantial greywater discharges into the marine environment. Greywater, originating from sinks, showers, kitchen, and laundry facilities, contains a wide array of chemical contaminants influenced by on-board activities, ship size, and management practices. The lack of comprehensive regulations for greywater management, along with limited research on its chemical composition, highlights the need to characterize these waste streams. This study is one of the first to provide a comprehensive characterization of greywater samples from ships using advanced liquid chromatography coupled to high-resolution-mass-spectrometry (LC-HRMS) strategies, including wide-scope target and suspect screening. The target analysis detected 86 compounds, such as pharmaceuticals, stimulants, tobacco and food-related products, personal care products, UV filters, surfactants, perfluoroalkyl compounds, plasticizers, and flame retardants, many of which are rarely measured in routine monitoring programs. Furthermore, 11 additional compounds were tentatively identified through suspect screening. A novel scoring system further highlighted 25 priority compounds posing ecological risks to marine ecosystems, including pharmaceuticals such as tapentadol, dextrorphan, citalopram, or irbesartan. This study emphasizes the significant introduction of chemicals at μg L−1 levels through greywater discharges, underscoring the urgent need for improved management practices to mitigate ecological risks to the marine ecosystem.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.