荧光粉暴露在强光照下充电的观察

IF 3.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED
Quan Sun, Yuning Luan, Tingxing Shi, Yaqi Zhu, Feng Liu, Liangliang Zhang, Jiahua Zhang, Xiao-jun Wang, Yichun Liu
{"title":"荧光粉暴露在强光照下充电的观察","authors":"Quan Sun, Yuning Luan, Tingxing Shi, Yaqi Zhu, Feng Liu, Liangliang Zhang, Jiahua Zhang, Xiao-jun Wang, Yichun Liu","doi":"10.1063/5.0237272","DOIUrl":null,"url":null,"abstract":"Storage phosphors, known for their delayed emission after charging, have shown great potential for applications in radiation detection, bio-imaging, and medical diagnosis. Despite their promise, the underlying mechanisms governing their charging behavior have not been sufficiently investigated. In this Letter, we elucidate the response of storage phosphors, focusing on the Y3Sc2Ga3O12:Pr3+ composition, when subjected to intense illumination. Our findings reveal that upon exposure to 266 nm ultraviolet or 450 nm blue lasers, the phosphor efficiently captures excitation energy through direct photoionization or upconversion charging (UCC), leading to subsequent trap filling. Thermoluminescence measurements, incorporating variations in irradiation power and dose, confirm that UCC enables an impressive fast charging time of 0.01 s. The unique two-step ionization and nonlinear charging characteristics of UCC are visually demonstrated using a portable laser engraver. Furthermore, we illustrate the versatility of UCC across different phosphor systems, highlighting its potential for advanced information storage applications. This research significantly advances the understanding of phosphor charging dynamics, paving the way for future innovations in luminescent materials.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"1 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights of phosphor charging upon exposure to intense illumination\",\"authors\":\"Quan Sun, Yuning Luan, Tingxing Shi, Yaqi Zhu, Feng Liu, Liangliang Zhang, Jiahua Zhang, Xiao-jun Wang, Yichun Liu\",\"doi\":\"10.1063/5.0237272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Storage phosphors, known for their delayed emission after charging, have shown great potential for applications in radiation detection, bio-imaging, and medical diagnosis. Despite their promise, the underlying mechanisms governing their charging behavior have not been sufficiently investigated. In this Letter, we elucidate the response of storage phosphors, focusing on the Y3Sc2Ga3O12:Pr3+ composition, when subjected to intense illumination. Our findings reveal that upon exposure to 266 nm ultraviolet or 450 nm blue lasers, the phosphor efficiently captures excitation energy through direct photoionization or upconversion charging (UCC), leading to subsequent trap filling. Thermoluminescence measurements, incorporating variations in irradiation power and dose, confirm that UCC enables an impressive fast charging time of 0.01 s. The unique two-step ionization and nonlinear charging characteristics of UCC are visually demonstrated using a portable laser engraver. Furthermore, we illustrate the versatility of UCC across different phosphor systems, highlighting its potential for advanced information storage applications. This research significantly advances the understanding of phosphor charging dynamics, paving the way for future innovations in luminescent materials.\",\"PeriodicalId\":8094,\"journal\":{\"name\":\"Applied Physics Letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0237272\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0237272","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

存储荧光粉具有充电后延迟发射的特性,在辐射探测、生物成像和医学诊断等方面具有巨大的应用潜力。尽管它们很有前途,但控制它们充电行为的潜在机制还没有得到充分的研究。在这封信中,我们阐明了存储荧光粉的响应,重点是Y3Sc2Ga3O12:Pr3+组成,当受到强光照射时。我们的研究结果表明,当暴露于266 nm紫外或450 nm蓝色激光时,荧光粉通过直接光电离或上转换充电(UCC)有效地捕获激发能量,导致随后的陷阱填充。结合辐照功率和剂量变化的热释光测量证实,UCC可实现令人印象深刻的0.01 s快速充电时间。使用便携式激光雕刻机直观地展示了UCC独特的两步电离和非线性充电特性。此外,我们说明了UCC在不同荧光粉系统中的多功能性,突出了其在高级信息存储应用中的潜力。这项研究显著推进了对荧光粉充电动力学的理解,为未来发光材料的创新铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights of phosphor charging upon exposure to intense illumination
Storage phosphors, known for their delayed emission after charging, have shown great potential for applications in radiation detection, bio-imaging, and medical diagnosis. Despite their promise, the underlying mechanisms governing their charging behavior have not been sufficiently investigated. In this Letter, we elucidate the response of storage phosphors, focusing on the Y3Sc2Ga3O12:Pr3+ composition, when subjected to intense illumination. Our findings reveal that upon exposure to 266 nm ultraviolet or 450 nm blue lasers, the phosphor efficiently captures excitation energy through direct photoionization or upconversion charging (UCC), leading to subsequent trap filling. Thermoluminescence measurements, incorporating variations in irradiation power and dose, confirm that UCC enables an impressive fast charging time of 0.01 s. The unique two-step ionization and nonlinear charging characteristics of UCC are visually demonstrated using a portable laser engraver. Furthermore, we illustrate the versatility of UCC across different phosphor systems, highlighting its potential for advanced information storage applications. This research significantly advances the understanding of phosphor charging dynamics, paving the way for future innovations in luminescent materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信