{"title":"黑洞-中子星合并喷射中的锕系元素增强过程","authors":"Shinya Wanajo, Sho Fujibayashi, Kota Hayashi, Kenta Kiuchi, Yuichiro Sekiguchi, Masaru Shibata","doi":"10.1103/physrevlett.133.241201","DOIUrl":null,"url":null,"abstract":"We examine nucleosynthesis in the ejecta of black-hole–neutron-star mergers based on the results of long-term neutrino-radiation-magnetohydrodynamics simulations for the first time. We find that the combination of dynamical and postmerger ejecta reproduces a solarlike r</a:mi></a:mrow></a:math>-process pattern. Moreover, the enhancement level of actinides is highly sensitive to the distribution of both the electron fraction and the velocity of the dynamical ejecta. Our result implies that the mean electron fraction of dynamical ejecta should be <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo>≳</c:mo><c:mn>0.05</c:mn></c:math> in order to reconcile the nucleosynthetic abundances with those in <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>r</e:mi></e:math>-process-enhanced, actinide-boost stars. Since the tidal ejecta preserve the neutron richness in the inner crust of premerging neutron stars, this result provides an important constraint for nuclear equations of state if black-hole–neutron-star mergers are responsible for actinide-boost stars. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"21 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Actinide-Boosting r Process in Black-Hole–Neutron-Star Merger Ejecta\",\"authors\":\"Shinya Wanajo, Sho Fujibayashi, Kota Hayashi, Kenta Kiuchi, Yuichiro Sekiguchi, Masaru Shibata\",\"doi\":\"10.1103/physrevlett.133.241201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine nucleosynthesis in the ejecta of black-hole–neutron-star mergers based on the results of long-term neutrino-radiation-magnetohydrodynamics simulations for the first time. We find that the combination of dynamical and postmerger ejecta reproduces a solarlike r</a:mi></a:mrow></a:math>-process pattern. Moreover, the enhancement level of actinides is highly sensitive to the distribution of both the electron fraction and the velocity of the dynamical ejecta. Our result implies that the mean electron fraction of dynamical ejecta should be <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mo>≳</c:mo><c:mn>0.05</c:mn></c:math> in order to reconcile the nucleosynthetic abundances with those in <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mi>r</e:mi></e:math>-process-enhanced, actinide-boost stars. Since the tidal ejecta preserve the neutron richness in the inner crust of premerging neutron stars, this result provides an important constraint for nuclear equations of state if black-hole–neutron-star mergers are responsible for actinide-boost stars. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2024</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.133.241201\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.133.241201","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Actinide-Boosting r Process in Black-Hole–Neutron-Star Merger Ejecta
We examine nucleosynthesis in the ejecta of black-hole–neutron-star mergers based on the results of long-term neutrino-radiation-magnetohydrodynamics simulations for the first time. We find that the combination of dynamical and postmerger ejecta reproduces a solarlike r-process pattern. Moreover, the enhancement level of actinides is highly sensitive to the distribution of both the electron fraction and the velocity of the dynamical ejecta. Our result implies that the mean electron fraction of dynamical ejecta should be ≳0.05 in order to reconcile the nucleosynthetic abundances with those in r-process-enhanced, actinide-boost stars. Since the tidal ejecta preserve the neutron richness in the inner crust of premerging neutron stars, this result provides an important constraint for nuclear equations of state if black-hole–neutron-star mergers are responsible for actinide-boost stars. Published by the American Physical Society2024
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks