分层生态系统模型的好处:使用新的状态-空间质量-平衡模型EcoState进行演示

IF 5.6 1区 农林科学 Q1 FISHERIES
James T. Thorson, Kasper Kristensen, Kerim Y. Aydin, Sarah K. Gaichas, David G. Kimmel, Elizabeth A. McHuron, Jens M. Nielsen, Howard Townsend, George A. Whitehouse
{"title":"分层生态系统模型的好处:使用新的状态-空间质量-平衡模型EcoState进行演示","authors":"James T. Thorson, Kasper Kristensen, Kerim Y. Aydin, Sarah K. Gaichas, David G. Kimmel, Elizabeth A. McHuron, Jens M. Nielsen, Howard Townsend, George A. Whitehouse","doi":"10.1111/faf.12874","DOIUrl":null,"url":null,"abstract":"Ecosystem models predict changes in productivity and status for multiple species, and are important for incorporating climate‐linked dynamics in ecosystem‐based fisheries management. However, fishery regulations are primarily informed by single‐species stock assessment models, which estimate unexplained variation in dynamics (e.g., recruitment, survival, fishery selectivity, etc) using random effects. We review the general benefits of estimating random effects in ecosystem models: (1) better representing biomass cycles and trends for focal species; (2) conditioning interactions upon observed biomass for predators and prey; (3) easier replication of model results using formal estimation rather than informal model “tuning;” and (4) attributing process errors via comparison amongst different models. We then demonstrate these by introducing a new state‐space model EcoState (and associated R‐package) that extends mass balance dynamics from Ecopath with Ecosim. This model estimates mass balance (Ecopath) and time‐dynamics (Ecosim) parameters directly via their fit to time‐series data (biomass indices and fisheries catches) while also estimating the magnitude of process errors using RTMB. A real‐world application involving Alaska pollock (<jats:styled-content style=\"fixed-case\"><jats:italic>Gadus chalcogrammus</jats:italic></jats:styled-content>) in the eastern Bering Sea suggests that fluctuations in krill consumption are associated with cycles of increased and decreased pollock production. A self‐test simulation experiment confirms that estimating process errors can improve estimates of productivity (growth and mortality) rates. Overall, we show that state‐space mass‐balance models can be fitted to time‐series data (similar to surplus‐production stock assessment models), and can attribute time‐varying productivity to both bottom‐up and top‐down drivers including the contribution of individual predator and prey interactions.","PeriodicalId":169,"journal":{"name":"Fish and Fisheries","volume":"20 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Benefits of Hierarchical Ecosystem Models: Demonstration Using EcoState, a New State‐Space Mass‐Balance Model\",\"authors\":\"James T. Thorson, Kasper Kristensen, Kerim Y. Aydin, Sarah K. Gaichas, David G. Kimmel, Elizabeth A. McHuron, Jens M. Nielsen, Howard Townsend, George A. Whitehouse\",\"doi\":\"10.1111/faf.12874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ecosystem models predict changes in productivity and status for multiple species, and are important for incorporating climate‐linked dynamics in ecosystem‐based fisheries management. However, fishery regulations are primarily informed by single‐species stock assessment models, which estimate unexplained variation in dynamics (e.g., recruitment, survival, fishery selectivity, etc) using random effects. We review the general benefits of estimating random effects in ecosystem models: (1) better representing biomass cycles and trends for focal species; (2) conditioning interactions upon observed biomass for predators and prey; (3) easier replication of model results using formal estimation rather than informal model “tuning;” and (4) attributing process errors via comparison amongst different models. We then demonstrate these by introducing a new state‐space model EcoState (and associated R‐package) that extends mass balance dynamics from Ecopath with Ecosim. This model estimates mass balance (Ecopath) and time‐dynamics (Ecosim) parameters directly via their fit to time‐series data (biomass indices and fisheries catches) while also estimating the magnitude of process errors using RTMB. A real‐world application involving Alaska pollock (<jats:styled-content style=\\\"fixed-case\\\"><jats:italic>Gadus chalcogrammus</jats:italic></jats:styled-content>) in the eastern Bering Sea suggests that fluctuations in krill consumption are associated with cycles of increased and decreased pollock production. A self‐test simulation experiment confirms that estimating process errors can improve estimates of productivity (growth and mortality) rates. Overall, we show that state‐space mass‐balance models can be fitted to time‐series data (similar to surplus‐production stock assessment models), and can attribute time‐varying productivity to both bottom‐up and top‐down drivers including the contribution of individual predator and prey interactions.\",\"PeriodicalId\":169,\"journal\":{\"name\":\"Fish and Fisheries\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fish and Fisheries\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/faf.12874\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FISHERIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish and Fisheries","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/faf.12874","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

摘要

生态系统模型预测多种物种的生产力和状态变化,对于在基于生态系统的渔业管理中纳入气候相关动力学具有重要意义。然而,渔业法规主要是由单一物种种群评估模型提供信息的,该模型利用随机效应估计无法解释的动态变化(例如,招募、生存、渔业选择性等)。我们回顾了在生态系统模型中估计随机效应的一般好处:(1)更好地代表焦点物种的生物量循环和趋势;(2)捕食者和猎物对观测生物量的调节作用;(3)使用正式估计而不是非正式模型“调优”更容易复制模型结果;(4)通过不同模型之间的比较来归因于过程误差。然后,我们通过引入一个新的状态空间模型EcoState(以及相关的R - package)来证明这些,该模型将Ecopath的质量平衡动力学扩展到Ecosim。该模型通过对时间序列数据(生物量指数和渔业捕鱼量)的拟合直接估计质量平衡(Ecopath)和时间动力学(Ecosim)参数,同时还使用rmmb估计过程误差的大小。对白令海东部阿拉斯加狭鳕(Gadus chalcogrammus)的实际应用表明,磷虾消费量的波动与狭鳕产量的增减周期有关。一项自我测试模拟实验证实,估计过程误差可以提高对生产率(增长率和死亡率)的估计。总体而言,我们表明状态空间质量平衡模型可以适用于时间序列数据(类似于剩余生产存量评估模型),并且可以将时变生产率归因于自下而上和自上而下的驱动因素,包括个体捕食者和猎物相互作用的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Benefits of Hierarchical Ecosystem Models: Demonstration Using EcoState, a New State‐Space Mass‐Balance Model
Ecosystem models predict changes in productivity and status for multiple species, and are important for incorporating climate‐linked dynamics in ecosystem‐based fisheries management. However, fishery regulations are primarily informed by single‐species stock assessment models, which estimate unexplained variation in dynamics (e.g., recruitment, survival, fishery selectivity, etc) using random effects. We review the general benefits of estimating random effects in ecosystem models: (1) better representing biomass cycles and trends for focal species; (2) conditioning interactions upon observed biomass for predators and prey; (3) easier replication of model results using formal estimation rather than informal model “tuning;” and (4) attributing process errors via comparison amongst different models. We then demonstrate these by introducing a new state‐space model EcoState (and associated R‐package) that extends mass balance dynamics from Ecopath with Ecosim. This model estimates mass balance (Ecopath) and time‐dynamics (Ecosim) parameters directly via their fit to time‐series data (biomass indices and fisheries catches) while also estimating the magnitude of process errors using RTMB. A real‐world application involving Alaska pollock (Gadus chalcogrammus) in the eastern Bering Sea suggests that fluctuations in krill consumption are associated with cycles of increased and decreased pollock production. A self‐test simulation experiment confirms that estimating process errors can improve estimates of productivity (growth and mortality) rates. Overall, we show that state‐space mass‐balance models can be fitted to time‐series data (similar to surplus‐production stock assessment models), and can attribute time‐varying productivity to both bottom‐up and top‐down drivers including the contribution of individual predator and prey interactions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fish and Fisheries
Fish and Fisheries 农林科学-渔业
CiteScore
12.80
自引率
6.00%
发文量
83
期刊介绍: Fish and Fisheries adopts a broad, interdisciplinary approach to the subject of fish biology and fisheries. It draws contributions in the form of major synoptic papers and syntheses or meta-analyses that lay out new approaches, re-examine existing findings, methods or theory, and discuss papers and commentaries from diverse areas. Focal areas include fish palaeontology, molecular biology and ecology, genetics, biochemistry, physiology, ecology, behaviour, evolutionary studies, conservation, assessment, population dynamics, mathematical modelling, ecosystem analysis and the social, economic and policy aspects of fisheries where they are grounded in a scientific approach. A paper in Fish and Fisheries must draw upon all key elements of the existing literature on a topic, normally have a broad geographic and/or taxonomic scope, and provide general points which make it compelling to a wide range of readers whatever their geographical location. So, in short, we aim to publish articles that make syntheses of old or synoptic, long-term or spatially widespread data, introduce or consolidate fresh concepts or theory, or, in the Ghoti section, briefly justify preliminary, new synoptic ideas. Please note that authors of submissions not meeting this mandate will be directed to the appropriate primary literature.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信