新型X@g-C3N4/GaP3 (X = S, Se)异质结构光催化全水分解

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Wen-Jie Shi , Chuan-Lu Yang , Xiaohu Li , Yuliang Liu , Wenkai Zhao
{"title":"新型X@g-C3N4/GaP3 (X = S, Se)异质结构光催化全水分解","authors":"Wen-Jie Shi ,&nbsp;Chuan-Lu Yang ,&nbsp;Xiaohu Li ,&nbsp;Yuliang Liu ,&nbsp;Wenkai Zhao","doi":"10.1016/j.apsusc.2024.162045","DOIUrl":null,"url":null,"abstract":"<div><div>S or Se atoms are doped into the g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructure to promote the solar-to-hydrogen (STH) efficiency. The fully optimized geometrical structures demonstrate the doped S and Se atoms are possibly located at either out-plane or in-plane sites on the g-C<sub>3</sub>N<sub>4</sub> monolayer of the heterostructure. The electronic properties reveal that the photocatalytic Z-schemes with a maximum STH efficiency of 27.53 % or 24.77 % can be achieved for the out-plane S or Se-doped g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructure, respectively. The migration and recombination of the photogenerated carriers are explored using non-adiabatic molecular dynamics simulation. The outputs demonstrate that the electron/hole lifetimes in photocatalytic hydrogen/oxygen evolution reactions are similar, indicating that the activities of the photogenerated carriers are effectively protected. However, the electron-hole recombination of the Se@g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructure is faster, implying that the photocatalytic Z-scheme is more efficient. Gibbs free energies show that the Se@g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructure can drive the hydrogen evolution reactions to proceed spontaneously. These facts indicate that the S@g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> and Se@g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructures are competitive candidates for overall water splitting with photocatalytic Z-schemes for hydrogen production.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"685 ","pages":"Article 162045"},"PeriodicalIF":6.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel X@g-C3N4/GaP3 (X = S, Se) heterostructures for photocatalytic overall water splitting with Z-scheme\",\"authors\":\"Wen-Jie Shi ,&nbsp;Chuan-Lu Yang ,&nbsp;Xiaohu Li ,&nbsp;Yuliang Liu ,&nbsp;Wenkai Zhao\",\"doi\":\"10.1016/j.apsusc.2024.162045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>S or Se atoms are doped into the g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructure to promote the solar-to-hydrogen (STH) efficiency. The fully optimized geometrical structures demonstrate the doped S and Se atoms are possibly located at either out-plane or in-plane sites on the g-C<sub>3</sub>N<sub>4</sub> monolayer of the heterostructure. The electronic properties reveal that the photocatalytic Z-schemes with a maximum STH efficiency of 27.53 % or 24.77 % can be achieved for the out-plane S or Se-doped g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructure, respectively. The migration and recombination of the photogenerated carriers are explored using non-adiabatic molecular dynamics simulation. The outputs demonstrate that the electron/hole lifetimes in photocatalytic hydrogen/oxygen evolution reactions are similar, indicating that the activities of the photogenerated carriers are effectively protected. However, the electron-hole recombination of the Se@g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructure is faster, implying that the photocatalytic Z-scheme is more efficient. Gibbs free energies show that the Se@g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructure can drive the hydrogen evolution reactions to proceed spontaneously. These facts indicate that the S@g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> and Se@g-C<sub>3</sub>N<sub>4</sub>/GaP<sub>3</sub> heterostructures are competitive candidates for overall water splitting with photocatalytic Z-schemes for hydrogen production.</div></div>\",\"PeriodicalId\":247,\"journal\":{\"name\":\"Applied Surface Science\",\"volume\":\"685 \",\"pages\":\"Article 162045\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Surface Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169433224027612\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433224027612","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在g-C3N4/GaP3异质结构中掺入S或Se原子以提高太阳能制氢效率。完全优化的几何结构表明,掺杂的S和Se原子可能位于异质结构的g-C3N4单层的面外或面内位置。电子性质表明,对于面外掺S或se的g-C3N4/GaP3异质结构,光催化z方案的最大STH效率分别为27.53 %和24.77 %。利用非绝热分子动力学模拟研究了光生载流子的迁移和重组。结果表明,光催化析氢/析氧反应中的电子/空穴寿命相似,表明光生载流子的活性得到了有效的保护。然而,Se@g-C3N4/GaP3异质结构的电子-空穴复合速度更快,这表明光催化z -方案效率更高。Gibbs自由能表明Se@g-C3N4/GaP3异质结构可以驱动析氢反应自发进行。这些事实表明S@g-C3N4/GaP3和Se@g-C3N4/GaP3异质结构是光催化制氢的全面水裂解的竞争候选人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Novel X@g-C3N4/GaP3 (X = S, Se) heterostructures for photocatalytic overall water splitting with Z-scheme

Novel X@g-C3N4/GaP3 (X = S, Se) heterostructures for photocatalytic overall water splitting with Z-scheme

Novel X@g-C3N4/GaP3 (X = S, Se) heterostructures for photocatalytic overall water splitting with Z-scheme
S or Se atoms are doped into the g-C3N4/GaP3 heterostructure to promote the solar-to-hydrogen (STH) efficiency. The fully optimized geometrical structures demonstrate the doped S and Se atoms are possibly located at either out-plane or in-plane sites on the g-C3N4 monolayer of the heterostructure. The electronic properties reveal that the photocatalytic Z-schemes with a maximum STH efficiency of 27.53 % or 24.77 % can be achieved for the out-plane S or Se-doped g-C3N4/GaP3 heterostructure, respectively. The migration and recombination of the photogenerated carriers are explored using non-adiabatic molecular dynamics simulation. The outputs demonstrate that the electron/hole lifetimes in photocatalytic hydrogen/oxygen evolution reactions are similar, indicating that the activities of the photogenerated carriers are effectively protected. However, the electron-hole recombination of the Se@g-C3N4/GaP3 heterostructure is faster, implying that the photocatalytic Z-scheme is more efficient. Gibbs free energies show that the Se@g-C3N4/GaP3 heterostructure can drive the hydrogen evolution reactions to proceed spontaneously. These facts indicate that the S@g-C3N4/GaP3 and Se@g-C3N4/GaP3 heterostructures are competitive candidates for overall water splitting with photocatalytic Z-schemes for hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信