Yufei Wu , Vega Lloveras , Silvia Lope-Piedrafita , Marta Mulero-Acevedo , Ana Paula Candiota , José Vidal-Gancedo
{"title":"氨基酸支链自由基树状大分子作为脑肿瘤MRI造影剂的合成及弛豫性研究。","authors":"Yufei Wu , Vega Lloveras , Silvia Lope-Piedrafita , Marta Mulero-Acevedo , Ana Paula Candiota , José Vidal-Gancedo","doi":"10.1016/j.actbio.2024.12.006","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces a series of water-soluble radical dendrimers (G0 to G5) as promising magnetic resonance imaging (MRI) contrast agents that could potentially address clinical safety concerns associated with current gadolinium-based contrast agents. By using a simplified synthetic approach based on a cyclotriphosphazene core and lysine-derived branching units, we successfully developed a G5 dendrimer containing up to 192 units of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) radical. This synthesis offers advantages including ease of preparation, purification, and tunable water solubility through the incorporation of glutamic acid anion residues. Comprehensive characterization using <sup>1</sup>H NMR, FT-IR, and SEC-HPLC confirmed the dendrimers' structures and purity. Electron paramagnetic resonance (EPR) spectroscopy revealed that TEMPO groups in higher generation dendrimers exhibited decreased mobility and stronger spin exchange in their local environments. <em>In vitro</em> MRI showed that relaxivity (<em>r</em><sub>1</sub>) increased with higher dendrimer generations, with G5 exhibiting an exceptionally high <em>r</em><sub>1</sub> of over 24 mM<sup>-1</sup>s<sup>-1</sup>. Molecular dynamics simulations provided crucial insights into structure-property relationships, revealing the importance of water accessibility to TEMPO groups for enhancing relaxivity. Vero cell viability assay demonstrated G3 and G3.5 have good biocompatibility. <em>In vivo</em> MRI experiments in mice demonstrated that G3.5 was excreted through the kidneys and selectively accumulated in glioblastoma tumors.</div></div><div><h3>Statement of significance</h3><div>This study explores a class of MRI contrast agents based on organic radical dendrimers as a potential alternative to gadolinium-based agents. We present a simplified synthesis method for water-soluble dendrimers containing up to 192 TEMPO radical units—the highest number achieved to date for this class of compounds—resulting in record-high relaxivity values. Our approach offers easier preparation, purification, and tunable water solubility, representing an improvement over existing methods. Through combined experimental and computational studies, we provide insights into the structure-property relationships governing relaxivity. <em>In vivo</em> experiments demonstrate the dendrimers' potential for glioblastoma imaging, with predominantly renal excretion. This work represents a step towards developing metal-free MRI contrast agents with promising relaxivity and biocompatibility, potentially opening new avenues for diagnostic imaging research.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"192 ","pages":"Pages 461-472"},"PeriodicalIF":9.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Relaxivity study of amino acid-branched radical dendrimers as MRI contrast agents for potential brain tumor imaging\",\"authors\":\"Yufei Wu , Vega Lloveras , Silvia Lope-Piedrafita , Marta Mulero-Acevedo , Ana Paula Candiota , José Vidal-Gancedo\",\"doi\":\"10.1016/j.actbio.2024.12.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces a series of water-soluble radical dendrimers (G0 to G5) as promising magnetic resonance imaging (MRI) contrast agents that could potentially address clinical safety concerns associated with current gadolinium-based contrast agents. By using a simplified synthetic approach based on a cyclotriphosphazene core and lysine-derived branching units, we successfully developed a G5 dendrimer containing up to 192 units of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) radical. This synthesis offers advantages including ease of preparation, purification, and tunable water solubility through the incorporation of glutamic acid anion residues. Comprehensive characterization using <sup>1</sup>H NMR, FT-IR, and SEC-HPLC confirmed the dendrimers' structures and purity. Electron paramagnetic resonance (EPR) spectroscopy revealed that TEMPO groups in higher generation dendrimers exhibited decreased mobility and stronger spin exchange in their local environments. <em>In vitro</em> MRI showed that relaxivity (<em>r</em><sub>1</sub>) increased with higher dendrimer generations, with G5 exhibiting an exceptionally high <em>r</em><sub>1</sub> of over 24 mM<sup>-1</sup>s<sup>-1</sup>. Molecular dynamics simulations provided crucial insights into structure-property relationships, revealing the importance of water accessibility to TEMPO groups for enhancing relaxivity. Vero cell viability assay demonstrated G3 and G3.5 have good biocompatibility. <em>In vivo</em> MRI experiments in mice demonstrated that G3.5 was excreted through the kidneys and selectively accumulated in glioblastoma tumors.</div></div><div><h3>Statement of significance</h3><div>This study explores a class of MRI contrast agents based on organic radical dendrimers as a potential alternative to gadolinium-based agents. We present a simplified synthesis method for water-soluble dendrimers containing up to 192 TEMPO radical units—the highest number achieved to date for this class of compounds—resulting in record-high relaxivity values. Our approach offers easier preparation, purification, and tunable water solubility, representing an improvement over existing methods. Through combined experimental and computational studies, we provide insights into the structure-property relationships governing relaxivity. <em>In vivo</em> experiments demonstrate the dendrimers' potential for glioblastoma imaging, with predominantly renal excretion. This work represents a step towards developing metal-free MRI contrast agents with promising relaxivity and biocompatibility, potentially opening new avenues for diagnostic imaging research.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"192 \",\"pages\":\"Pages 461-472\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706124007153\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124007153","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Synthesis and Relaxivity study of amino acid-branched radical dendrimers as MRI contrast agents for potential brain tumor imaging
This study introduces a series of water-soluble radical dendrimers (G0 to G5) as promising magnetic resonance imaging (MRI) contrast agents that could potentially address clinical safety concerns associated with current gadolinium-based contrast agents. By using a simplified synthetic approach based on a cyclotriphosphazene core and lysine-derived branching units, we successfully developed a G5 dendrimer containing up to 192 units of 2,2,6,6-Tetramethylpiperidinyloxy (TEMPO) radical. This synthesis offers advantages including ease of preparation, purification, and tunable water solubility through the incorporation of glutamic acid anion residues. Comprehensive characterization using 1H NMR, FT-IR, and SEC-HPLC confirmed the dendrimers' structures and purity. Electron paramagnetic resonance (EPR) spectroscopy revealed that TEMPO groups in higher generation dendrimers exhibited decreased mobility and stronger spin exchange in their local environments. In vitro MRI showed that relaxivity (r1) increased with higher dendrimer generations, with G5 exhibiting an exceptionally high r1 of over 24 mM-1s-1. Molecular dynamics simulations provided crucial insights into structure-property relationships, revealing the importance of water accessibility to TEMPO groups for enhancing relaxivity. Vero cell viability assay demonstrated G3 and G3.5 have good biocompatibility. In vivo MRI experiments in mice demonstrated that G3.5 was excreted through the kidneys and selectively accumulated in glioblastoma tumors.
Statement of significance
This study explores a class of MRI contrast agents based on organic radical dendrimers as a potential alternative to gadolinium-based agents. We present a simplified synthesis method for water-soluble dendrimers containing up to 192 TEMPO radical units—the highest number achieved to date for this class of compounds—resulting in record-high relaxivity values. Our approach offers easier preparation, purification, and tunable water solubility, representing an improvement over existing methods. Through combined experimental and computational studies, we provide insights into the structure-property relationships governing relaxivity. In vivo experiments demonstrate the dendrimers' potential for glioblastoma imaging, with predominantly renal excretion. This work represents a step towards developing metal-free MRI contrast agents with promising relaxivity and biocompatibility, potentially opening new avenues for diagnostic imaging research.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.