使用基于易于访问的开源软件模拟数据的深度学习算法对低场磁共振图像进行降噪。

IF 2 3区 化学 Q3 BIOCHEMICAL RESEARCH METHODS
Aram Salehi , Mathieu Mach , Chloe Najac , Beatrice Lena , Thomas O’Reilly , Yiming Dong , Peter Börnert , Hieab Adams , Tavia Evans , Andrew Webb
{"title":"使用基于易于访问的开源软件模拟数据的深度学习算法对低场磁共振图像进行降噪。","authors":"Aram Salehi ,&nbsp;Mathieu Mach ,&nbsp;Chloe Najac ,&nbsp;Beatrice Lena ,&nbsp;Thomas O’Reilly ,&nbsp;Yiming Dong ,&nbsp;Peter Börnert ,&nbsp;Hieab Adams ,&nbsp;Tavia Evans ,&nbsp;Andrew Webb","doi":"10.1016/j.jmr.2024.107812","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we introduce a denoising method aimed at improving the contrast ratio in low-field MRI (LFMRI) using an advanced 3D deep convolutional residual network model. Our approach employs synthetic brain imaging datasets that closely mimic the contrast and noise characteristics of LFMRI scans, addressing the limitation of available in-vivo LFMRI datasets for training deep learning models. In the simulation data, the Relative Contrast Ratio (RCR) increased, and similar improvements were observed in the in-vivo data across different imaging conditions. Comparative evaluations demonstrate that our model performs better than the widely used non-deep learning method, BM4D, in enhancing RCR and maintaining high spatial frequency components in in-vivo data.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"370 ","pages":"Article 107812"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Denoising low-field MR images with a deep learning algorithm based on simulated data from easily accessible open-source software\",\"authors\":\"Aram Salehi ,&nbsp;Mathieu Mach ,&nbsp;Chloe Najac ,&nbsp;Beatrice Lena ,&nbsp;Thomas O’Reilly ,&nbsp;Yiming Dong ,&nbsp;Peter Börnert ,&nbsp;Hieab Adams ,&nbsp;Tavia Evans ,&nbsp;Andrew Webb\",\"doi\":\"10.1016/j.jmr.2024.107812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, we introduce a denoising method aimed at improving the contrast ratio in low-field MRI (LFMRI) using an advanced 3D deep convolutional residual network model. Our approach employs synthetic brain imaging datasets that closely mimic the contrast and noise characteristics of LFMRI scans, addressing the limitation of available in-vivo LFMRI datasets for training deep learning models. In the simulation data, the Relative Contrast Ratio (RCR) increased, and similar improvements were observed in the in-vivo data across different imaging conditions. Comparative evaluations demonstrate that our model performs better than the widely used non-deep learning method, BM4D, in enhancing RCR and maintaining high spatial frequency components in in-vivo data.</div></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"370 \",\"pages\":\"Article 107812\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724001964\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724001964","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们引入了一种旨在提高低场MRI (LFMRI)对比度的去噪方法,该方法采用了一种先进的3D深度卷积残差网络模型。我们的方法采用合成脑成像数据集,这些数据集密切模仿LFMRI扫描的对比度和噪声特征,解决了可用的活体LFMRI数据集用于训练深度学习模型的局限性。在模拟数据中,相对对比度(RCR)增加,在不同成像条件下的体内数据中也观察到类似的改善。对比评估表明,我们的模型在增强RCR和保持体内数据的高空间频率成分方面优于广泛使用的非深度学习方法BM4D。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Denoising low-field MR images with a deep learning algorithm based on simulated data from easily accessible open-source software

Denoising low-field MR images with a deep learning algorithm based on simulated data from easily accessible open-source software
In this study, we introduce a denoising method aimed at improving the contrast ratio in low-field MRI (LFMRI) using an advanced 3D deep convolutional residual network model. Our approach employs synthetic brain imaging datasets that closely mimic the contrast and noise characteristics of LFMRI scans, addressing the limitation of available in-vivo LFMRI datasets for training deep learning models. In the simulation data, the Relative Contrast Ratio (RCR) increased, and similar improvements were observed in the in-vivo data across different imaging conditions. Comparative evaluations demonstrate that our model performs better than the widely used non-deep learning method, BM4D, in enhancing RCR and maintaining high spatial frequency components in in-vivo data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
13.60%
发文量
150
审稿时长
69 days
期刊介绍: The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信