{"title":"结合多空间变尺度自适应滤波和前馈混合策略的跨速主轴电机轴承故障诊断。","authors":"Hao Zhou, Jianzhong Yang, Qian Zhu, Jihong Chen","doi":"10.1016/j.isatra.2024.11.045","DOIUrl":null,"url":null,"abstract":"<div><div>The vibration signal of the spindle motor contains complicated mixed modulation harmonics and background noise when computer numerical control (CNC) machine tools perform machining tasks. Additionally, frequent changes in the running speed of the spindle motor cause significant variations in the signal feature distribution, making fault diagnosis challenging. The adaptive sinusoidal fusion convolutional neural networks (ASFCNN) is proposed to achieve cross-speed spindle motor bearings fault diagnosis. The ASFCNN extracts multi-spatial and variable-scale fault features through the multi-spatial variable-scale adaptive sinusoidal filter (MVASF) for noise reduction. And a multi-level feedforward hybrid strategy (MFHS) is designed to fuse multi-layer features of the convolutional neural network (CNN) and time sequence information for fault feature enhancement. The proposed method is evaluated on a multi-source spindle motor dataset under real working conditions. Experimental results show that the ASFCNN model significantly outperforms the compared classical models in terms of diagnosis accuracy, the effectiveness and interpretability are validated through the visualization methods.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"157 ","pages":"Pages 368-380"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cross-speed spindle motor bearings fault diagnosis combined with multi-space variable scale adaptive filter and feedforward hybrid strategy\",\"authors\":\"Hao Zhou, Jianzhong Yang, Qian Zhu, Jihong Chen\",\"doi\":\"10.1016/j.isatra.2024.11.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The vibration signal of the spindle motor contains complicated mixed modulation harmonics and background noise when computer numerical control (CNC) machine tools perform machining tasks. Additionally, frequent changes in the running speed of the spindle motor cause significant variations in the signal feature distribution, making fault diagnosis challenging. The adaptive sinusoidal fusion convolutional neural networks (ASFCNN) is proposed to achieve cross-speed spindle motor bearings fault diagnosis. The ASFCNN extracts multi-spatial and variable-scale fault features through the multi-spatial variable-scale adaptive sinusoidal filter (MVASF) for noise reduction. And a multi-level feedforward hybrid strategy (MFHS) is designed to fuse multi-layer features of the convolutional neural network (CNN) and time sequence information for fault feature enhancement. The proposed method is evaluated on a multi-source spindle motor dataset under real working conditions. Experimental results show that the ASFCNN model significantly outperforms the compared classical models in terms of diagnosis accuracy, the effectiveness and interpretability are validated through the visualization methods.</div></div>\",\"PeriodicalId\":14660,\"journal\":{\"name\":\"ISA transactions\",\"volume\":\"157 \",\"pages\":\"Pages 368-380\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISA transactions\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0019057824005561\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824005561","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Cross-speed spindle motor bearings fault diagnosis combined with multi-space variable scale adaptive filter and feedforward hybrid strategy
The vibration signal of the spindle motor contains complicated mixed modulation harmonics and background noise when computer numerical control (CNC) machine tools perform machining tasks. Additionally, frequent changes in the running speed of the spindle motor cause significant variations in the signal feature distribution, making fault diagnosis challenging. The adaptive sinusoidal fusion convolutional neural networks (ASFCNN) is proposed to achieve cross-speed spindle motor bearings fault diagnosis. The ASFCNN extracts multi-spatial and variable-scale fault features through the multi-spatial variable-scale adaptive sinusoidal filter (MVASF) for noise reduction. And a multi-level feedforward hybrid strategy (MFHS) is designed to fuse multi-layer features of the convolutional neural network (CNN) and time sequence information for fault feature enhancement. The proposed method is evaluated on a multi-source spindle motor dataset under real working conditions. Experimental results show that the ASFCNN model significantly outperforms the compared classical models in terms of diagnosis accuracy, the effectiveness and interpretability are validated through the visualization methods.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.