{"title":"1,25-二羟基维生素D3在高脂饮食小鼠模型中通过丁酸途径调节肠胶质生物活性。","authors":"Aiwen Feng, Shaosheng Su, Qian Li, Cheng Li, Yingyan Liu, Jiasheng Qiu","doi":"10.1016/j.jsbmb.2024.106655","DOIUrl":null,"url":null,"abstract":"<p><p>1,25-dihydroxyvitamin D3 (1,25(OH)2D3), affects enteric glial cells (EGCs) activity, but the mechanism is still unknown. The current study aimed to explore whether 1,25(OH)2D3 could regulate EGCs activity via butyrate pathway in a high-fat diet model. Male C57BL/6 J mice were fed with standard diet (SDD), or vitamin-D-deficient diet (VDD), or high-fat diet (HFD), or HFD plus sodium butyrate (SBR), or HFD plus 1,25(OH)2D3, or HFD plus S100B inhibitor ONO-2506 in vivo. CRL-2690 and Caco-2 cells were treated with palmitic acid (PA) and oleic acid (OA) complex, or S100B, or S100B plus butyric acid (BA) in vitro. 25(OH)D3, 1,25(OH)2D3, TNF-α and S100B concentrations were assayed by enzyme-linked immuno- sorbent assay (ELISA). Colonic mucosal permeability was measured by using FITC-dextran 4 kDa. Colonic butyrate was detected using high-performance liquid chromatography (HPLC). The results showed HFD decreased serum 25(OH)D3 and 1,25(OH)2D3 concentrations and colonic butyrate generation. 1,25(OH)2D3 supplementation raised butyrate production in the colon. 1,25(OH)2D3 and sodium butyrate supplementation inhibited EGCs to produce S100B and reduced colonic permeability to FITC-dextran. Inhibition of S100B pathway by ONO- 2506 decreased colonic hyperpermeability. In vitro experiments showed butyrate treatment not only reduced S100B and TNF-α secretion from PA/OA-treated CRL-2690 cells, but also decreased the permeability of S100B-treated Caco-2 cells. Collectively, 1,25(OH)2D3 elicited butyrate to suppress EGCs activation, which helped to prevent intestinal barrier injury.</p>","PeriodicalId":51106,"journal":{"name":"Journal of Steroid Biochemistry and Molecular Biology","volume":" ","pages":"106655"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1,25-dihydroxyvitamin D3 regulates enteroglial bioactivity through butyric acid pathway in a high-fat diet mouse model.\",\"authors\":\"Aiwen Feng, Shaosheng Su, Qian Li, Cheng Li, Yingyan Liu, Jiasheng Qiu\",\"doi\":\"10.1016/j.jsbmb.2024.106655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>1,25-dihydroxyvitamin D3 (1,25(OH)2D3), affects enteric glial cells (EGCs) activity, but the mechanism is still unknown. The current study aimed to explore whether 1,25(OH)2D3 could regulate EGCs activity via butyrate pathway in a high-fat diet model. Male C57BL/6 J mice were fed with standard diet (SDD), or vitamin-D-deficient diet (VDD), or high-fat diet (HFD), or HFD plus sodium butyrate (SBR), or HFD plus 1,25(OH)2D3, or HFD plus S100B inhibitor ONO-2506 in vivo. CRL-2690 and Caco-2 cells were treated with palmitic acid (PA) and oleic acid (OA) complex, or S100B, or S100B plus butyric acid (BA) in vitro. 25(OH)D3, 1,25(OH)2D3, TNF-α and S100B concentrations were assayed by enzyme-linked immuno- sorbent assay (ELISA). Colonic mucosal permeability was measured by using FITC-dextran 4 kDa. Colonic butyrate was detected using high-performance liquid chromatography (HPLC). The results showed HFD decreased serum 25(OH)D3 and 1,25(OH)2D3 concentrations and colonic butyrate generation. 1,25(OH)2D3 supplementation raised butyrate production in the colon. 1,25(OH)2D3 and sodium butyrate supplementation inhibited EGCs to produce S100B and reduced colonic permeability to FITC-dextran. Inhibition of S100B pathway by ONO- 2506 decreased colonic hyperpermeability. In vitro experiments showed butyrate treatment not only reduced S100B and TNF-α secretion from PA/OA-treated CRL-2690 cells, but also decreased the permeability of S100B-treated Caco-2 cells. Collectively, 1,25(OH)2D3 elicited butyrate to suppress EGCs activation, which helped to prevent intestinal barrier injury.</p>\",\"PeriodicalId\":51106,\"journal\":{\"name\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"volume\":\" \",\"pages\":\"106655\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Steroid Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jsbmb.2024.106655\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Steroid Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jsbmb.2024.106655","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
1,25-dihydroxyvitamin D3 regulates enteroglial bioactivity through butyric acid pathway in a high-fat diet mouse model.
1,25-dihydroxyvitamin D3 (1,25(OH)2D3), affects enteric glial cells (EGCs) activity, but the mechanism is still unknown. The current study aimed to explore whether 1,25(OH)2D3 could regulate EGCs activity via butyrate pathway in a high-fat diet model. Male C57BL/6 J mice were fed with standard diet (SDD), or vitamin-D-deficient diet (VDD), or high-fat diet (HFD), or HFD plus sodium butyrate (SBR), or HFD plus 1,25(OH)2D3, or HFD plus S100B inhibitor ONO-2506 in vivo. CRL-2690 and Caco-2 cells were treated with palmitic acid (PA) and oleic acid (OA) complex, or S100B, or S100B plus butyric acid (BA) in vitro. 25(OH)D3, 1,25(OH)2D3, TNF-α and S100B concentrations were assayed by enzyme-linked immuno- sorbent assay (ELISA). Colonic mucosal permeability was measured by using FITC-dextran 4 kDa. Colonic butyrate was detected using high-performance liquid chromatography (HPLC). The results showed HFD decreased serum 25(OH)D3 and 1,25(OH)2D3 concentrations and colonic butyrate generation. 1,25(OH)2D3 supplementation raised butyrate production in the colon. 1,25(OH)2D3 and sodium butyrate supplementation inhibited EGCs to produce S100B and reduced colonic permeability to FITC-dextran. Inhibition of S100B pathway by ONO- 2506 decreased colonic hyperpermeability. In vitro experiments showed butyrate treatment not only reduced S100B and TNF-α secretion from PA/OA-treated CRL-2690 cells, but also decreased the permeability of S100B-treated Caco-2 cells. Collectively, 1,25(OH)2D3 elicited butyrate to suppress EGCs activation, which helped to prevent intestinal barrier injury.
期刊介绍:
The Journal of Steroid Biochemistry and Molecular Biology is devoted to new experimental and theoretical developments in areas related to steroids including vitamin D, lipids and their metabolomics. The Journal publishes a variety of contributions, including original articles, general and focused reviews, and rapid communications (brief articles of particular interest and clear novelty). Selected cutting-edge topics will be addressed in Special Issues managed by Guest Editors. Special Issues will contain both commissioned reviews and original research papers to provide comprehensive coverage of specific topics, and all submissions will undergo rigorous peer-review prior to publication.