Mukesh Thakur, Stanzin Dolker, Lenrik K Wangmo, Avijit Ghosh, Nikhil Dhankhar, Vinaya K Singh, Malay Shukla, Anandhan Rameshkumar, Manisha Biswal, Dhriti Banerjee, Bheem Dutt Joshi, Lalit K Sharma
{"title":"巴尔通体人畜共患病监测:探讨人类住区公共卫生风险。","authors":"Mukesh Thakur, Stanzin Dolker, Lenrik K Wangmo, Avijit Ghosh, Nikhil Dhankhar, Vinaya K Singh, Malay Shukla, Anandhan Rameshkumar, Manisha Biswal, Dhriti Banerjee, Bheem Dutt Joshi, Lalit K Sharma","doi":"10.1111/zph.13203","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Urban rodents are reservoirs of zoonotic pathogens, including Bartonella spp., which are transmitted by ectoparasites such as fleas. Zoonotic diseases caused by Bartonella often go undocumented due to confusing or subtle clinical symptoms, lack of awareness and poor diagnosis. This study aimed to assess the prevalence and diversity of Bartonella spp. by screening free-ranging rodents and their ectoparasites in the unique ecological settings of Alipore Railway Station, Kolkata, India. The station's high passenger traffic and proximity to food stalls create favourable conditions for rodents and fleas to thrive, increasing the risk of zoonotic transmission.</p><p><strong>Methods: </strong>Rodents and fleas were identified by morphological features and DNA sequencing. Detection of Bartonella was carried out by DNA sequencing of citrate synthase (gltA) gene. Phylogenetic relationships among the obtained sequences were inferred through phylogenetic tree and haplotype network analyses. Q-PCR testing from human samples from the surrounding area was performed to confirm the zoonotic transfer potential.</p><p><strong>Results: </strong>Of 60 rodents, identified as Bandicota indica 28 (46.7%) and Bandicota bengalensis 32 (53.3%), and 110 fleas (Xenopsylla cheopis) were collected. The prevalence of Bartonella infection varied across three different hosts, that is, 32/60 rodents (53.33%), 87/110 fleas (79.1%) and 4/25 human (16%). Phylogenetic analysis revealed four distinct Bartonella lineages comprising 11 novel haplotypes (H1-H11), with haplotype H4 shared between rodents, fleas and humans, indicating active and cross species transmission of Bartonella spp. Haplotype H10, identified as B. rochalimae, was a phylogenetically diverged lineage exclusively found in fleas, suggesting a potentially novel lineage.</p><p><strong>Conclusions: </strong>The results highlight the significant public health risks posed by Bartonella spp. in densely populated urban areas, particularly in environments like railway stations where human-rodent interactions are frequent. This study underscores the necessity of integrated pest management and surveillance strategies, using molecular tools such as Q-PCR, to mitigate the risk of zoonotic disease transmission in urban settings.</p>","PeriodicalId":24025,"journal":{"name":"Zoonoses and Public Health","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Zoonotic Surveillance of Bartonella spp.: Exploring the Public Health Risks in Human Settlements.\",\"authors\":\"Mukesh Thakur, Stanzin Dolker, Lenrik K Wangmo, Avijit Ghosh, Nikhil Dhankhar, Vinaya K Singh, Malay Shukla, Anandhan Rameshkumar, Manisha Biswal, Dhriti Banerjee, Bheem Dutt Joshi, Lalit K Sharma\",\"doi\":\"10.1111/zph.13203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Urban rodents are reservoirs of zoonotic pathogens, including Bartonella spp., which are transmitted by ectoparasites such as fleas. Zoonotic diseases caused by Bartonella often go undocumented due to confusing or subtle clinical symptoms, lack of awareness and poor diagnosis. This study aimed to assess the prevalence and diversity of Bartonella spp. by screening free-ranging rodents and their ectoparasites in the unique ecological settings of Alipore Railway Station, Kolkata, India. The station's high passenger traffic and proximity to food stalls create favourable conditions for rodents and fleas to thrive, increasing the risk of zoonotic transmission.</p><p><strong>Methods: </strong>Rodents and fleas were identified by morphological features and DNA sequencing. Detection of Bartonella was carried out by DNA sequencing of citrate synthase (gltA) gene. Phylogenetic relationships among the obtained sequences were inferred through phylogenetic tree and haplotype network analyses. Q-PCR testing from human samples from the surrounding area was performed to confirm the zoonotic transfer potential.</p><p><strong>Results: </strong>Of 60 rodents, identified as Bandicota indica 28 (46.7%) and Bandicota bengalensis 32 (53.3%), and 110 fleas (Xenopsylla cheopis) were collected. The prevalence of Bartonella infection varied across three different hosts, that is, 32/60 rodents (53.33%), 87/110 fleas (79.1%) and 4/25 human (16%). Phylogenetic analysis revealed four distinct Bartonella lineages comprising 11 novel haplotypes (H1-H11), with haplotype H4 shared between rodents, fleas and humans, indicating active and cross species transmission of Bartonella spp. Haplotype H10, identified as B. rochalimae, was a phylogenetically diverged lineage exclusively found in fleas, suggesting a potentially novel lineage.</p><p><strong>Conclusions: </strong>The results highlight the significant public health risks posed by Bartonella spp. in densely populated urban areas, particularly in environments like railway stations where human-rodent interactions are frequent. This study underscores the necessity of integrated pest management and surveillance strategies, using molecular tools such as Q-PCR, to mitigate the risk of zoonotic disease transmission in urban settings.</p>\",\"PeriodicalId\":24025,\"journal\":{\"name\":\"Zoonoses and Public Health\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoonoses and Public Health\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/zph.13203\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoonoses and Public Health","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/zph.13203","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Zoonotic Surveillance of Bartonella spp.: Exploring the Public Health Risks in Human Settlements.
Introduction: Urban rodents are reservoirs of zoonotic pathogens, including Bartonella spp., which are transmitted by ectoparasites such as fleas. Zoonotic diseases caused by Bartonella often go undocumented due to confusing or subtle clinical symptoms, lack of awareness and poor diagnosis. This study aimed to assess the prevalence and diversity of Bartonella spp. by screening free-ranging rodents and their ectoparasites in the unique ecological settings of Alipore Railway Station, Kolkata, India. The station's high passenger traffic and proximity to food stalls create favourable conditions for rodents and fleas to thrive, increasing the risk of zoonotic transmission.
Methods: Rodents and fleas were identified by morphological features and DNA sequencing. Detection of Bartonella was carried out by DNA sequencing of citrate synthase (gltA) gene. Phylogenetic relationships among the obtained sequences were inferred through phylogenetic tree and haplotype network analyses. Q-PCR testing from human samples from the surrounding area was performed to confirm the zoonotic transfer potential.
Results: Of 60 rodents, identified as Bandicota indica 28 (46.7%) and Bandicota bengalensis 32 (53.3%), and 110 fleas (Xenopsylla cheopis) were collected. The prevalence of Bartonella infection varied across three different hosts, that is, 32/60 rodents (53.33%), 87/110 fleas (79.1%) and 4/25 human (16%). Phylogenetic analysis revealed four distinct Bartonella lineages comprising 11 novel haplotypes (H1-H11), with haplotype H4 shared between rodents, fleas and humans, indicating active and cross species transmission of Bartonella spp. Haplotype H10, identified as B. rochalimae, was a phylogenetically diverged lineage exclusively found in fleas, suggesting a potentially novel lineage.
Conclusions: The results highlight the significant public health risks posed by Bartonella spp. in densely populated urban areas, particularly in environments like railway stations where human-rodent interactions are frequent. This study underscores the necessity of integrated pest management and surveillance strategies, using molecular tools such as Q-PCR, to mitigate the risk of zoonotic disease transmission in urban settings.
期刊介绍:
Zoonoses and Public Health brings together veterinary and human health researchers and policy-makers by providing a venue for publishing integrated and global approaches to zoonoses and public health. The Editors will consider papers that focus on timely collaborative and multi-disciplinary research in zoonoses and public health. This journal provides rapid publication of original papers, reviews, and potential discussion papers embracing this collaborative spirit. Papers should advance the scientific knowledge of the sources, transmission, prevention and control of zoonoses and be authored by scientists with expertise in areas such as microbiology, virology, parasitology and epidemiology. Articles that incorporate recent data into new methods, applications, or approaches (e.g. statistical modeling) which enhance public health are strongly encouraged.