{"title":"Systems Engineering Approach Towards Sensitive Cellular Fluorine-19 MRI.","authors":"Jiawen Chen, Piya Pal, Eric T Ahrens","doi":"10.1002/nbm.5298","DOIUrl":null,"url":null,"abstract":"<p><p>In vivo fluorine-19 MRI using F-based tracer media has shown utility and versatility for a wide range of biomedical uses, particularly immune and stem cell detection, as well as biosensing. As with many advanced MRI acquisition techniques, the sensitivity and limit of detection (LOD) in vivo is a key consideration for a successful study outcome. In this review, we analyze the primary factors that limit cell LOD. The achievable sensitivity is strongly dependent on the specific composition of tracer, cell type of interest, cell activity, data acquisition and reconstruction methods, and MRI hardware design. Recent innovations in molecular <sup>19</sup>F tracer design and image acquisition-reconstruction methods have achieved significant leaps in <sup>19</sup>F MRI sensitivity, and integration of these new materials and methods into studies can result in > 10-fold improvement in LOD. These developments will help unlock the full potential of clinical <sup>19</sup>F MRI for biomedical applications.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 1","pages":"e5298"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5298","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Systems Engineering Approach Towards Sensitive Cellular Fluorine-19 MRI.
In vivo fluorine-19 MRI using F-based tracer media has shown utility and versatility for a wide range of biomedical uses, particularly immune and stem cell detection, as well as biosensing. As with many advanced MRI acquisition techniques, the sensitivity and limit of detection (LOD) in vivo is a key consideration for a successful study outcome. In this review, we analyze the primary factors that limit cell LOD. The achievable sensitivity is strongly dependent on the specific composition of tracer, cell type of interest, cell activity, data acquisition and reconstruction methods, and MRI hardware design. Recent innovations in molecular 19F tracer design and image acquisition-reconstruction methods have achieved significant leaps in 19F MRI sensitivity, and integration of these new materials and methods into studies can result in > 10-fold improvement in LOD. These developments will help unlock the full potential of clinical 19F MRI for biomedical applications.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.