体外培养芦荟合成绿色纳米银的抗菌及抗膜活性研究。

IF 2 3区 工程技术 Q2 ANATOMY & MORPHOLOGY
Damla Gül, Simge Arkan Özdemir, Oğuz Yücel, Eren Yıldırım, Göksenin Kalyon, Esra Sungur, Serkan Emik, Ayşe Erol, Neslihan Turgut Kara
{"title":"体外培养芦荟合成绿色纳米银的抗菌及抗膜活性研究。","authors":"Damla Gül, Simge Arkan Özdemir, Oğuz Yücel, Eren Yıldırım, Göksenin Kalyon, Esra Sungur, Serkan Emik, Ayşe Erol, Neslihan Turgut Kara","doi":"10.1002/jemt.24768","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, in vitro grown Aloe vera L. tissues were used for AgNP synthesis. Adventitious root and callus tissues were grown in MS medium containing 1 mg/L IAA and 1 mg/L NAA. Using A. vera L. leaf, in vitro grown callus, and adventitious roots tissue extracts, AgNPs were synthesized. According to DLS analysis, PDI values and zeta potential values showed that AgNPs from adventitious root were more suitable in terms of size and surface charge. Characterization of adventitious root-derived AgNPs was performed by UV-Vis absorption spectrum, ICP/MS, SEM, FTIR, and XRD. According to HPLC results, catechin, gentisic acid, caffeic acid, coumaric acid, polydatin, coumarin, and ellagic acid were found in adventitious roots. Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC2 7853), MRSA (ATCC 33951) and Staphylococcus aureus (ATCC 6538) strains were used to determine the antibacterial and antibiofilm activity of AgNPs. The highest antibacterial activity was determined against P. aeruginosa. Lower concentrations of AgNPs caused changes in the structure of the biofilm formed by P. aeruginosa, which produced particularly strong biofilms, resulting in failure of biofilm maturation. Accordingly, AgNPs synthesized from Aloe vera L. adventitious roots had antibacterial and antibiofilm activity even at low concentrations against the tested bacterial strains.</p>","PeriodicalId":18684,"journal":{"name":"Microscopy Research and Technique","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial and Antibiofilm Activity of Green Synthesized Silver Nanoparticles by Using In Vitro Grown Aloe vera L.\",\"authors\":\"Damla Gül, Simge Arkan Özdemir, Oğuz Yücel, Eren Yıldırım, Göksenin Kalyon, Esra Sungur, Serkan Emik, Ayşe Erol, Neslihan Turgut Kara\",\"doi\":\"10.1002/jemt.24768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, in vitro grown Aloe vera L. tissues were used for AgNP synthesis. Adventitious root and callus tissues were grown in MS medium containing 1 mg/L IAA and 1 mg/L NAA. Using A. vera L. leaf, in vitro grown callus, and adventitious roots tissue extracts, AgNPs were synthesized. According to DLS analysis, PDI values and zeta potential values showed that AgNPs from adventitious root were more suitable in terms of size and surface charge. Characterization of adventitious root-derived AgNPs was performed by UV-Vis absorption spectrum, ICP/MS, SEM, FTIR, and XRD. According to HPLC results, catechin, gentisic acid, caffeic acid, coumaric acid, polydatin, coumarin, and ellagic acid were found in adventitious roots. Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC2 7853), MRSA (ATCC 33951) and Staphylococcus aureus (ATCC 6538) strains were used to determine the antibacterial and antibiofilm activity of AgNPs. The highest antibacterial activity was determined against P. aeruginosa. Lower concentrations of AgNPs caused changes in the structure of the biofilm formed by P. aeruginosa, which produced particularly strong biofilms, resulting in failure of biofilm maturation. Accordingly, AgNPs synthesized from Aloe vera L. adventitious roots had antibacterial and antibiofilm activity even at low concentrations against the tested bacterial strains.</p>\",\"PeriodicalId\":18684,\"journal\":{\"name\":\"Microscopy Research and Technique\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy Research and Technique\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24768\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy Research and Technique","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24768","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,体外培养的芦荟组织用于AgNP的合成。不定根和愈伤组织在含有1mg /L IAA和1mg /L NAA的MS培养基中生长。以芦荟叶片、离体愈伤组织和不定根组织提取物为原料合成AgNPs。DLS分析显示,PDI值和zeta电位值表明,来自不定根的AgNPs在大小和表面电荷方面更合适。采用紫外-可见吸收光谱、ICP/MS、SEM、FTIR和XRD对不定根衍生AgNPs进行表征。HPLC结果显示,不定根中含有儿茶素、龙胆酸、咖啡酸、香豆酸、聚丹苷、香豆素和鞣花酸。采用大肠埃希菌(ATCC 25922)、铜绿假单胞菌(ATCC2 7853)、MRSA (ATCC 33951)和金黄色葡萄球菌(ATCC 6538)检测AgNPs的抗菌和抗膜活性。对铜绿假单胞菌的抑菌活性最高。较低浓度的AgNPs导致P. aeruginosa形成的生物膜结构发生变化,产生特别强的生物膜,导致生物膜成熟失败。因此,芦荟不定根合成的AgNPs即使在低浓度下也具有抗菌和抗生物膜活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial and Antibiofilm Activity of Green Synthesized Silver Nanoparticles by Using In Vitro Grown Aloe vera L.

In this study, in vitro grown Aloe vera L. tissues were used for AgNP synthesis. Adventitious root and callus tissues were grown in MS medium containing 1 mg/L IAA and 1 mg/L NAA. Using A. vera L. leaf, in vitro grown callus, and adventitious roots tissue extracts, AgNPs were synthesized. According to DLS analysis, PDI values and zeta potential values showed that AgNPs from adventitious root were more suitable in terms of size and surface charge. Characterization of adventitious root-derived AgNPs was performed by UV-Vis absorption spectrum, ICP/MS, SEM, FTIR, and XRD. According to HPLC results, catechin, gentisic acid, caffeic acid, coumaric acid, polydatin, coumarin, and ellagic acid were found in adventitious roots. Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC2 7853), MRSA (ATCC 33951) and Staphylococcus aureus (ATCC 6538) strains were used to determine the antibacterial and antibiofilm activity of AgNPs. The highest antibacterial activity was determined against P. aeruginosa. Lower concentrations of AgNPs caused changes in the structure of the biofilm formed by P. aeruginosa, which produced particularly strong biofilms, resulting in failure of biofilm maturation. Accordingly, AgNPs synthesized from Aloe vera L. adventitious roots had antibacterial and antibiofilm activity even at low concentrations against the tested bacterial strains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microscopy Research and Technique
Microscopy Research and Technique 医学-解剖学与形态学
CiteScore
5.30
自引率
20.00%
发文量
233
审稿时长
4.7 months
期刊介绍: Microscopy Research and Technique (MRT) publishes articles on all aspects of advanced microscopy original architecture and methodologies with applications in the biological, clinical, chemical, and materials sciences. Original basic and applied research as well as technical papers dealing with the various subsets of microscopy are encouraged. MRT is the right form for those developing new microscopy methods or using the microscope to answer key questions in basic and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信