在血管内皮细胞中,DRIM调节Src激活和血管生成功能。

IF 3.3 3区 生物学 Q3 CELL BIOLOGY
Jia Tong, Xuefei Dong, Tracey A. Martin, Yiming Yang, Bo Dong, Wen G. Jiang
{"title":"在血管内皮细胞中,DRIM调节Src激活和血管生成功能。","authors":"Jia Tong,&nbsp;Xuefei Dong,&nbsp;Tracey A. Martin,&nbsp;Yiming Yang,&nbsp;Bo Dong,&nbsp;Wen G. Jiang","doi":"10.1002/cbin.12265","DOIUrl":null,"url":null,"abstract":"<p>Downregulated in Metastasis Protein (DRIM) was discovered in malignant epithelial cells and was thought to be mainly a nucleus protein affecting cancer cells. Recent single-cell sequencing analysis suggests that DRIM is abundantly expressed in vascular endothelial cells. There has been no knowledge of the role of DRIM in the endothelium. In the present study, using protein fraction method and cell imaging, we identified that the DRIM protein was abundantly present in both nucleus and the cytoskeletal fractions of human vascular endothelial cells. Knockdown of DRIM in the endothelial cells significantly affected growth, migration, and angiogenic tubule formation. Proteomics analyses revealed that Src was an important direct target protein of DRIM, a finding further confirmed by protein interaction assay. Silencing DRIM activated the tyrosine 419 site phosphorylation of Src kinase in endothelial cells, thereby affecting the downstream proteins of Src including p-FAK and p-STAT3, and exerting biological effects. To conclude, our results provide evidence of DRIM being a nuclear and cytoskeletal-associated protein, having a novel key role of the protein in vascular endothelial cells.</p>","PeriodicalId":9806,"journal":{"name":"Cell Biology International","volume":"49 3","pages":"277-287"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12265","citationCount":"0","resultStr":"{\"title\":\"DRIM modulates Src activation and regulates angiogenic functions in vascular endothelial cells\",\"authors\":\"Jia Tong,&nbsp;Xuefei Dong,&nbsp;Tracey A. Martin,&nbsp;Yiming Yang,&nbsp;Bo Dong,&nbsp;Wen G. Jiang\",\"doi\":\"10.1002/cbin.12265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Downregulated in Metastasis Protein (DRIM) was discovered in malignant epithelial cells and was thought to be mainly a nucleus protein affecting cancer cells. Recent single-cell sequencing analysis suggests that DRIM is abundantly expressed in vascular endothelial cells. There has been no knowledge of the role of DRIM in the endothelium. In the present study, using protein fraction method and cell imaging, we identified that the DRIM protein was abundantly present in both nucleus and the cytoskeletal fractions of human vascular endothelial cells. Knockdown of DRIM in the endothelial cells significantly affected growth, migration, and angiogenic tubule formation. Proteomics analyses revealed that Src was an important direct target protein of DRIM, a finding further confirmed by protein interaction assay. Silencing DRIM activated the tyrosine 419 site phosphorylation of Src kinase in endothelial cells, thereby affecting the downstream proteins of Src including p-FAK and p-STAT3, and exerting biological effects. To conclude, our results provide evidence of DRIM being a nuclear and cytoskeletal-associated protein, having a novel key role of the protein in vascular endothelial cells.</p>\",\"PeriodicalId\":9806,\"journal\":{\"name\":\"Cell Biology International\",\"volume\":\"49 3\",\"pages\":\"277-287\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12265\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biology International\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12265\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biology International","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12265","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在恶性上皮细胞中发现了转移蛋白(Metastasis Protein, DRIM)下调,认为其主要是一种影响癌细胞的核蛋白。最近的单细胞测序分析表明,DRIM在血管内皮细胞中大量表达。关于DRIM在内皮中的作用还没有任何认识。在本研究中,我们利用蛋白质片段法和细胞成像技术,发现DRIM蛋白在人血管内皮细胞的细胞核和细胞骨架片段中都大量存在。内皮细胞中DRIM的下调显著影响了细胞的生长、迁移和血管小管的形成。蛋白质组学分析显示Src是DRIM的重要直接靶蛋白,蛋白质相互作用实验进一步证实了这一发现。沉默DRIM激活内皮细胞Src激酶酪氨酸419位点磷酸化,从而影响Src的下游蛋白包括p-FAK和p-STAT3,并产生生物学效应。总之,我们的研究结果提供了证据,证明DRIM是一种核和细胞骨架相关蛋白,在血管内皮细胞中具有新的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

DRIM modulates Src activation and regulates angiogenic functions in vascular endothelial cells

DRIM modulates Src activation and regulates angiogenic functions in vascular endothelial cells

Downregulated in Metastasis Protein (DRIM) was discovered in malignant epithelial cells and was thought to be mainly a nucleus protein affecting cancer cells. Recent single-cell sequencing analysis suggests that DRIM is abundantly expressed in vascular endothelial cells. There has been no knowledge of the role of DRIM in the endothelium. In the present study, using protein fraction method and cell imaging, we identified that the DRIM protein was abundantly present in both nucleus and the cytoskeletal fractions of human vascular endothelial cells. Knockdown of DRIM in the endothelial cells significantly affected growth, migration, and angiogenic tubule formation. Proteomics analyses revealed that Src was an important direct target protein of DRIM, a finding further confirmed by protein interaction assay. Silencing DRIM activated the tyrosine 419 site phosphorylation of Src kinase in endothelial cells, thereby affecting the downstream proteins of Src including p-FAK and p-STAT3, and exerting biological effects. To conclude, our results provide evidence of DRIM being a nuclear and cytoskeletal-associated protein, having a novel key role of the protein in vascular endothelial cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biology International
Cell Biology International 生物-细胞生物学
CiteScore
7.60
自引率
0.00%
发文量
208
审稿时长
1 months
期刊介绍: Each month, the journal publishes easy-to-assimilate, up-to-the minute reports of experimental findings by researchers using a wide range of the latest techniques. Promoting the aims of cell biologists worldwide, papers reporting on structure and function - especially where they relate to the physiology of the whole cell - are strongly encouraged. Molecular biology is welcome, as long as articles report findings that are seen in the wider context of cell biology. In covering all areas of the cell, the journal is both appealing and accessible to a broad audience. Authors whose papers do not appeal to cell biologists in general because their topic is too specialized (e.g. infectious microbes, protozoology) are recommended to send them to more relevant journals. Papers reporting whole animal studies or work more suited to a medical journal, e.g. histopathological studies or clinical immunology, are unlikely to be accepted, unless they are fully focused on some important cellular aspect. These last remarks extend particularly to papers on cancer. Unless firmly based on some deeper cellular or molecular biological principle, papers that are highly specialized in this field, with limited appeal to cell biologists at large, should be directed towards journals devoted to cancer, there being very many from which to choose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信