探索聚苯乙烯纳米塑料对精子发生的生物学效应:来自小鼠精母细胞转录组学分析的见解。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY
Ying Jiang, Kexuan He, Qianyi Shen, Can Yang, Xin Huang, Junjie Fan, Miaomiao Du, Jianrong Wu, Huajuan Ruan, Jun Yang, Yeting Hong
{"title":"探索聚苯乙烯纳米塑料对精子发生的生物学效应:来自小鼠精母细胞转录组学分析的见解。","authors":"Ying Jiang, Kexuan He, Qianyi Shen, Can Yang, Xin Huang, Junjie Fan, Miaomiao Du, Jianrong Wu, Huajuan Ruan, Jun Yang, Yeting Hong","doi":"10.1177/10915818241305086","DOIUrl":null,"url":null,"abstract":"<p><p>The presence of polystyrene plastics in the human testis has raised concerns, yet their biological activity remains poorly characterized. This study aimed to investigate the biological effects and potential regulatory genes of polystyrene nanoplastics on spermatocyte line, GC-2spd(ts). After a 24-h exposure to polystyrene nanoplastics, the results indicated cell membrane disruption, impairment of mitochondrial membrane potential, increased levels of reactive oxygen species (ROS), and induced DNA damage. Furthermore, a comprehensive transcriptomic analysis was conducted, revealing differential gene expression patterns in GC-2spd(ts) cells in response to polystyrene nanoplastics. A total of 134 differentially expressed genes (DEGs) were identified, with 48 genes upregulated and 86 genes downregulated. The Gene Ontology analysis highlighted the involvement of these genes in various spermatogenesis-related biological processes, including acrosome reaction, sperm mitochondrial organization, sperm annulus, and outer acrosomal membrane. Subsequently, the quantification of gene expression through qRT-PCR identified five key genes (NSUN7, SEPTIN4, TRIM36, EQTN, and SYT8) screened from the DEGs. In conclusion, this study provides valuable insights into the biological effects of polystyrene nanoplastics on mouse spermatocytes using comprehensive transcriptomic analysis, contributing to the establishment of a foundation for future investigations into these relevant pathways.</p>","PeriodicalId":14432,"journal":{"name":"International Journal of Toxicology","volume":" ","pages":"10915818241305086"},"PeriodicalIF":1.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Biological Effects of Polystyrene Nanoplastics on Spermatogenesis: Insights From Transcriptomic Analysis in Mouse Spermatocytes.\",\"authors\":\"Ying Jiang, Kexuan He, Qianyi Shen, Can Yang, Xin Huang, Junjie Fan, Miaomiao Du, Jianrong Wu, Huajuan Ruan, Jun Yang, Yeting Hong\",\"doi\":\"10.1177/10915818241305086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The presence of polystyrene plastics in the human testis has raised concerns, yet their biological activity remains poorly characterized. This study aimed to investigate the biological effects and potential regulatory genes of polystyrene nanoplastics on spermatocyte line, GC-2spd(ts). After a 24-h exposure to polystyrene nanoplastics, the results indicated cell membrane disruption, impairment of mitochondrial membrane potential, increased levels of reactive oxygen species (ROS), and induced DNA damage. Furthermore, a comprehensive transcriptomic analysis was conducted, revealing differential gene expression patterns in GC-2spd(ts) cells in response to polystyrene nanoplastics. A total of 134 differentially expressed genes (DEGs) were identified, with 48 genes upregulated and 86 genes downregulated. The Gene Ontology analysis highlighted the involvement of these genes in various spermatogenesis-related biological processes, including acrosome reaction, sperm mitochondrial organization, sperm annulus, and outer acrosomal membrane. Subsequently, the quantification of gene expression through qRT-PCR identified five key genes (NSUN7, SEPTIN4, TRIM36, EQTN, and SYT8) screened from the DEGs. In conclusion, this study provides valuable insights into the biological effects of polystyrene nanoplastics on mouse spermatocytes using comprehensive transcriptomic analysis, contributing to the establishment of a foundation for future investigations into these relevant pathways.</p>\",\"PeriodicalId\":14432,\"journal\":{\"name\":\"International Journal of Toxicology\",\"volume\":\" \",\"pages\":\"10915818241305086\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/10915818241305086\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/10915818241305086","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

聚苯乙烯塑料在人类睾丸中的存在引起了人们的关注,但它们的生物活性仍不清楚。本研究旨在探讨聚苯乙烯纳米塑料对精子细胞系GC-2spd(ts)的生物学效应及其可能的调控基因。暴露于聚苯乙烯纳米塑料24小时后,结果表明细胞膜破坏,线粒体膜电位损伤,活性氧(ROS)水平升高,并诱导DNA损伤。此外,我们进行了全面的转录组学分析,揭示了GC-2spd(ts)细胞对聚苯乙烯纳米塑料的不同基因表达模式。共鉴定出134个差异表达基因(DEGs),其中48个基因上调,86个基因下调。基因本体分析强调了这些基因参与各种精子发生相关的生物学过程,包括顶体反应、精子线粒体组织、精子环和顶体外膜。随后,通过qRT-PCR对基因表达进行定量分析,从deg中筛选出5个关键基因(NSUN7、SEPTIN4、TRIM36、EQTN和SYT8)。总之,本研究通过全面的转录组学分析,为聚苯乙烯纳米塑料对小鼠精母细胞的生物学效应提供了有价值的见解,为进一步研究这些相关途径奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Biological Effects of Polystyrene Nanoplastics on Spermatogenesis: Insights From Transcriptomic Analysis in Mouse Spermatocytes.

The presence of polystyrene plastics in the human testis has raised concerns, yet their biological activity remains poorly characterized. This study aimed to investigate the biological effects and potential regulatory genes of polystyrene nanoplastics on spermatocyte line, GC-2spd(ts). After a 24-h exposure to polystyrene nanoplastics, the results indicated cell membrane disruption, impairment of mitochondrial membrane potential, increased levels of reactive oxygen species (ROS), and induced DNA damage. Furthermore, a comprehensive transcriptomic analysis was conducted, revealing differential gene expression patterns in GC-2spd(ts) cells in response to polystyrene nanoplastics. A total of 134 differentially expressed genes (DEGs) were identified, with 48 genes upregulated and 86 genes downregulated. The Gene Ontology analysis highlighted the involvement of these genes in various spermatogenesis-related biological processes, including acrosome reaction, sperm mitochondrial organization, sperm annulus, and outer acrosomal membrane. Subsequently, the quantification of gene expression through qRT-PCR identified five key genes (NSUN7, SEPTIN4, TRIM36, EQTN, and SYT8) screened from the DEGs. In conclusion, this study provides valuable insights into the biological effects of polystyrene nanoplastics on mouse spermatocytes using comprehensive transcriptomic analysis, contributing to the establishment of a foundation for future investigations into these relevant pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
4.50%
发文量
53
审稿时长
4.5 months
期刊介绍: The International Journal of Toxicology publishes timely, peer-reviewed papers on current topics important to toxicologists. Six bi-monthly issues cover a wide range of topics, including contemporary issues in toxicology, safety assessments, novel approaches to toxicological testing, mechanisms of toxicity, biomarkers, and risk assessment. The Journal also publishes invited reviews on contemporary topics, and features articles based on symposia. In addition, supplemental issues are routinely published on various special topics, including three supplements devoted to contributions from the Cosmetic Review Expert Panel.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信