探索热成像技术与数据挖掘算法的结合,实现蜂蜜和蜂蜡产量的精确预测。

IF 1.7 3区 农林科学 Q2 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Mustafa Kibar, Yasin Altay, İbrahim Aytekin
{"title":"探索热成像技术与数据挖掘算法的结合,实现蜂蜜和蜂蜡产量的精确预测。","authors":"Mustafa Kibar,&nbsp;Yasin Altay,&nbsp;İbrahim Aytekin","doi":"10.1111/asj.70015","DOIUrl":null,"url":null,"abstract":"<p>Sustainability in beekeeping depends on identifying the factors affecting honey and beeswax yields (HY and BWY) - key products - and accurately predicting these yields. Therefore, this study aimed to predict HY and BWY using a classification and regression tree (CART), eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, and thermal image processing in <i>Apis mellifera</i>. In this study, 13 colonies of 6 different breeds raised in 10-frame Langstroth hives were used. The effects of independent variables were predicted using data mining algorithms and 15 performance metrics for the effectiveness of the algorithms. Colony power (CP), thermal temperatures (T<sub>min</sub>, T<sub>max</sub>, and T<sub>mean</sub>), breed, a*, b*, red, green, saturation, and brightness impacted HY and BWY in different algorithms, but not birth year of queen, L, hue and blue. As a result, XGBoost, CART, and RF demonstrated high predictive performance, respectively. Due to their higher predictive performance, XGBoost and CART algorithms could predict HY and BWY using CP, thermal temperatures, and image values. These techniques could be useful for producers to monitor production quickly and non-invasively without threatening colony welfare.</p>","PeriodicalId":7890,"journal":{"name":"Animal Science Journal","volume":"95 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the integration of thermal imaging technology with the data mining algorithms for precise prediction of honey and beeswax yield\",\"authors\":\"Mustafa Kibar,&nbsp;Yasin Altay,&nbsp;İbrahim Aytekin\",\"doi\":\"10.1111/asj.70015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sustainability in beekeeping depends on identifying the factors affecting honey and beeswax yields (HY and BWY) - key products - and accurately predicting these yields. Therefore, this study aimed to predict HY and BWY using a classification and regression tree (CART), eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, and thermal image processing in <i>Apis mellifera</i>. In this study, 13 colonies of 6 different breeds raised in 10-frame Langstroth hives were used. The effects of independent variables were predicted using data mining algorithms and 15 performance metrics for the effectiveness of the algorithms. Colony power (CP), thermal temperatures (T<sub>min</sub>, T<sub>max</sub>, and T<sub>mean</sub>), breed, a*, b*, red, green, saturation, and brightness impacted HY and BWY in different algorithms, but not birth year of queen, L, hue and blue. As a result, XGBoost, CART, and RF demonstrated high predictive performance, respectively. Due to their higher predictive performance, XGBoost and CART algorithms could predict HY and BWY using CP, thermal temperatures, and image values. These techniques could be useful for producers to monitor production quickly and non-invasively without threatening colony welfare.</p>\",\"PeriodicalId\":7890,\"journal\":{\"name\":\"Animal Science Journal\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Science Journal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/asj.70015\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Science Journal","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/asj.70015","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

养蜂业的可持续性取决于确定影响关键产品蜂蜜和蜂蜡产量(HY和BWY)的因素,并准确预测这些产量。因此,本研究旨在利用分类回归树(CART)、极端梯度增强(XGBoost)和随机森林(RF)算法以及热图像处理技术预测蜜蜂的HY和BWY。在本研究中,使用了在10架Langstroth蜂箱中饲养的6个不同品种的13个菌落。使用数据挖掘算法和算法有效性的15个性能指标来预测自变量的影响。蜂群功率(CP)、热温度(Tmin、Tmax、Tmean)、品种、a*、b*、红、绿、饱和度、亮度对不同算法的HY和BWY有影响,但对蚁后出生年份、L、色相和蓝色没有影响。因此,XGBoost、CART和RF分别表现出较高的预测性能。由于其较高的预测性能,XGBoost和CART算法可以使用CP、热温度和图像值来预测HY和BWY。这些技术可以帮助生产者快速和非侵入性地监测生产,而不会威胁到群体福利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the integration of thermal imaging technology with the data mining algorithms for precise prediction of honey and beeswax yield

Sustainability in beekeeping depends on identifying the factors affecting honey and beeswax yields (HY and BWY) - key products - and accurately predicting these yields. Therefore, this study aimed to predict HY and BWY using a classification and regression tree (CART), eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, and thermal image processing in Apis mellifera. In this study, 13 colonies of 6 different breeds raised in 10-frame Langstroth hives were used. The effects of independent variables were predicted using data mining algorithms and 15 performance metrics for the effectiveness of the algorithms. Colony power (CP), thermal temperatures (Tmin, Tmax, and Tmean), breed, a*, b*, red, green, saturation, and brightness impacted HY and BWY in different algorithms, but not birth year of queen, L, hue and blue. As a result, XGBoost, CART, and RF demonstrated high predictive performance, respectively. Due to their higher predictive performance, XGBoost and CART algorithms could predict HY and BWY using CP, thermal temperatures, and image values. These techniques could be useful for producers to monitor production quickly and non-invasively without threatening colony welfare.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Animal Science Journal
Animal Science Journal 生物-奶制品与动物科学
CiteScore
3.80
自引率
5.00%
发文量
111
审稿时长
1 months
期刊介绍: Animal Science Journal (a continuation of Animal Science and Technology) is the official journal of the Japanese Society of Animal Science (JSAS) and publishes Original Research Articles (full papers and rapid communications) in English in all fields of animal and poultry science: genetics and breeding, genetic engineering, reproduction, embryo manipulation, nutrition, feeds and feeding, physiology, anatomy, environment and behavior, animal products (milk, meat, eggs and their by-products) and their processing, and livestock economics. Animal Science Journal will invite Review Articles in consultations with Editors. Submission to the Journal is open to those who are interested in animal science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信