原子级精密单金属掺杂银纳米团簇中创纪录的高超极化率。

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Hao Yuan, Isabelle Russier-Antoine, Christophe Moulin, Pierre-François Brevet, Željka Sanader Maršić, Martina Perić Bakulić, Xi Kang, Rodolphe Antoine and Manzhou Zhu
{"title":"原子级精密单金属掺杂银纳米团簇中创纪录的高超极化率。","authors":"Hao Yuan, Isabelle Russier-Antoine, Christophe Moulin, Pierre-François Brevet, Željka Sanader Maršić, Martina Perić Bakulić, Xi Kang, Rodolphe Antoine and Manzhou Zhu","doi":"10.1039/D4NH00454J","DOIUrl":null,"url":null,"abstract":"<p >Recent developments in optical imaging techniques, particularly multi-photon excitation microscopy that allows studies of biological interactions at a deep cellular level, have motivated intensive research in developing multi-photon absorption fluorophores. Biological tissues are optically transparent in the near-infrared region. Therefore, fluorophores that can absorb light in the near-infrared (NIR) region by multi-photon absorption are particularly useful in bio-imaging. For instance, photoluminescence from ligand-protected gold nanoclusters has drawn extensive research interest in the past decade due to their bright, non-blinking, stable emission and tunability from the blue to the NIR emission. In this work, using the control of single metal doping on silver nanoclusters (Ag<small><sub>25</sub></small> protected by thiolate SR = 2,4-dimethylbenzenethiol (DMBT) ligand), we aim to explore the effects of metal doping on the (photo)stability and nonlinear optical response of liganded nanoclusters. We study two-photon excited photoluminescence and the second harmonic response upon excitation in the NIR (780–950 nm) range. Particular emphasis is placed on the effect of metal doping on the second-order nonlinear optical scattering properties (first hyperpolarizability, <em>β</em>(2<em>ω</em>)) of Ag<small><sub>25</sub></small> nanoclusters. In addition, <em>β</em>(2<em>ω</em>) values are one order higher than the one reported for Au<small><sub>25</sub></small> nanoclusters and represent the largest values ever reported for ligand-protected nanoclusters. Such enhanced hyperpolarizability leads to a strong second harmonic response and renders them attractive targets in bioimaging.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" 2","pages":" 314-321"},"PeriodicalIF":8.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Record-high hyperpolarizabilities in atomically precise single metal-doped silver nanoclusters†\",\"authors\":\"Hao Yuan, Isabelle Russier-Antoine, Christophe Moulin, Pierre-François Brevet, Željka Sanader Maršić, Martina Perić Bakulić, Xi Kang, Rodolphe Antoine and Manzhou Zhu\",\"doi\":\"10.1039/D4NH00454J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Recent developments in optical imaging techniques, particularly multi-photon excitation microscopy that allows studies of biological interactions at a deep cellular level, have motivated intensive research in developing multi-photon absorption fluorophores. Biological tissues are optically transparent in the near-infrared region. Therefore, fluorophores that can absorb light in the near-infrared (NIR) region by multi-photon absorption are particularly useful in bio-imaging. For instance, photoluminescence from ligand-protected gold nanoclusters has drawn extensive research interest in the past decade due to their bright, non-blinking, stable emission and tunability from the blue to the NIR emission. In this work, using the control of single metal doping on silver nanoclusters (Ag<small><sub>25</sub></small> protected by thiolate SR = 2,4-dimethylbenzenethiol (DMBT) ligand), we aim to explore the effects of metal doping on the (photo)stability and nonlinear optical response of liganded nanoclusters. We study two-photon excited photoluminescence and the second harmonic response upon excitation in the NIR (780–950 nm) range. Particular emphasis is placed on the effect of metal doping on the second-order nonlinear optical scattering properties (first hyperpolarizability, <em>β</em>(2<em>ω</em>)) of Ag<small><sub>25</sub></small> nanoclusters. In addition, <em>β</em>(2<em>ω</em>) values are one order higher than the one reported for Au<small><sub>25</sub></small> nanoclusters and represent the largest values ever reported for ligand-protected nanoclusters. Such enhanced hyperpolarizability leads to a strong second harmonic response and renders them attractive targets in bioimaging.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" 2\",\"pages\":\" 314-321\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d4nh00454j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nh/d4nh00454j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光学成像技术的最新发展,特别是多光子激发显微镜,可以在深层细胞水平上研究生物相互作用,推动了对开发多光子吸收荧光团的深入研究。生物组织在近红外区域是透明的。因此,可以通过多光子吸收吸收近红外(NIR)区域的光的荧光团在生物成像中特别有用。例如,在过去的十年中,由配体保护的金纳米团簇的光致发光由于其明亮,不闪烁,稳定的发射和从蓝色到近红外发射的可调性而引起了广泛的研究兴趣。在这项工作中,我们通过控制单金属掺杂对银纳米团簇(Ag25由硫代酸盐SR = 2,4-二甲基苯乙醇(DMBT)配体保护)的影响,旨在探讨金属掺杂对配体纳米团簇(光)稳定性和非线性光学响应的影响。研究了近红外(780-950 nm)范围内双光子激发的光致发光和激发后的二次谐波响应。特别强调了金属掺杂对Ag25纳米团簇二阶非线性光学散射特性(第一超极化率,β(2ω))的影响。此外,β(2ω)值比报道的Au25纳米团簇高一个数量级,代表了配体保护纳米团簇报道的最大值。这种增强的超极化性导致了强烈的二次谐波响应,使它们成为生物成像中有吸引力的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Record-high hyperpolarizabilities in atomically precise single metal-doped silver nanoclusters†

Record-high hyperpolarizabilities in atomically precise single metal-doped silver nanoclusters†

Recent developments in optical imaging techniques, particularly multi-photon excitation microscopy that allows studies of biological interactions at a deep cellular level, have motivated intensive research in developing multi-photon absorption fluorophores. Biological tissues are optically transparent in the near-infrared region. Therefore, fluorophores that can absorb light in the near-infrared (NIR) region by multi-photon absorption are particularly useful in bio-imaging. For instance, photoluminescence from ligand-protected gold nanoclusters has drawn extensive research interest in the past decade due to their bright, non-blinking, stable emission and tunability from the blue to the NIR emission. In this work, using the control of single metal doping on silver nanoclusters (Ag25 protected by thiolate SR = 2,4-dimethylbenzenethiol (DMBT) ligand), we aim to explore the effects of metal doping on the (photo)stability and nonlinear optical response of liganded nanoclusters. We study two-photon excited photoluminescence and the second harmonic response upon excitation in the NIR (780–950 nm) range. Particular emphasis is placed on the effect of metal doping on the second-order nonlinear optical scattering properties (first hyperpolarizability, β(2ω)) of Ag25 nanoclusters. In addition, β(2ω) values are one order higher than the one reported for Au25 nanoclusters and represent the largest values ever reported for ligand-protected nanoclusters. Such enhanced hyperpolarizability leads to a strong second harmonic response and renders them attractive targets in bioimaging.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信