协同地震地球模型:第二代

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Sebastian Noe, Dirk-Philip van Herwaarden, Solvi Thrastarson, Marta Pienkowska, Neda Masouminia, Jincheng Ma, Hans-Peter Bunge, Deborah Wehner, Nicholas Rawlinson, Yajian Gao, Frederik Tilmann, Artie Rodgers, Andreas Fichtner
{"title":"协同地震地球模型:第二代","authors":"Sebastian Noe,&nbsp;Dirk-Philip van Herwaarden,&nbsp;Solvi Thrastarson,&nbsp;Marta Pienkowska,&nbsp;Neda Masouminia,&nbsp;Jincheng Ma,&nbsp;Hans-Peter Bunge,&nbsp;Deborah Wehner,&nbsp;Nicholas Rawlinson,&nbsp;Yajian Gao,&nbsp;Frederik Tilmann,&nbsp;Artie Rodgers,&nbsp;Andreas Fichtner","doi":"10.1029/2024JB029656","DOIUrl":null,"url":null,"abstract":"<p>Geological interpretations, earthquake source inversions and ground motion modeling, among other applications, require models that jointly resolve crustal and mantle structure. With the second generation of the Collaborative Seismic Earth Model (CSEM2), we present a global multi-resolution tomographic Earth model that serves this purpose. The model evolves through successive regional- and global-scale refinements. While the first generation aggregated regional models, with this study, we ensure consistency between all individual submodels, resulting in a model that accurately explains wave propagation across scales. Recent regional tomographic models were incorporated, comprising continental-scale inversions for Asia and Africa, as well as regional inversions for the Western US, Central Andes, Iran, and Southeast Asia. Across all regional refinements, over 793,000 source-receiver pairs contributed. Moreover, the long-wavelength Earth model (LOWE) introduces large-scale structures outside of pre-existing local refinements. A full-waveform inversion for global anisotropic P-and S-wave speed structure over a total of 194 iterations with a minimum period of 50 s on a large data set of 1 hr of waveform data from 2,423 earthquakes and over 6 million source-receiver pairs ensures that regional updates in the crust and uppermost mantle translate into updates of deeper, global-scale structure. To test the performance of CSEM2, we evaluate waveform fits between observed and synthetic seismograms at 50 s for an independent data set on the global scale, and on the regional scale for lower periods. We accurately simulate waveforms within and across regional refinements, maintaining the original resolution of the submodels embedded in the global framework.</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":"129 12","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029656","citationCount":"0","resultStr":"{\"title\":\"The Collaborative Seismic Earth Model: Generation 2\",\"authors\":\"Sebastian Noe,&nbsp;Dirk-Philip van Herwaarden,&nbsp;Solvi Thrastarson,&nbsp;Marta Pienkowska,&nbsp;Neda Masouminia,&nbsp;Jincheng Ma,&nbsp;Hans-Peter Bunge,&nbsp;Deborah Wehner,&nbsp;Nicholas Rawlinson,&nbsp;Yajian Gao,&nbsp;Frederik Tilmann,&nbsp;Artie Rodgers,&nbsp;Andreas Fichtner\",\"doi\":\"10.1029/2024JB029656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Geological interpretations, earthquake source inversions and ground motion modeling, among other applications, require models that jointly resolve crustal and mantle structure. With the second generation of the Collaborative Seismic Earth Model (CSEM2), we present a global multi-resolution tomographic Earth model that serves this purpose. The model evolves through successive regional- and global-scale refinements. While the first generation aggregated regional models, with this study, we ensure consistency between all individual submodels, resulting in a model that accurately explains wave propagation across scales. Recent regional tomographic models were incorporated, comprising continental-scale inversions for Asia and Africa, as well as regional inversions for the Western US, Central Andes, Iran, and Southeast Asia. Across all regional refinements, over 793,000 source-receiver pairs contributed. Moreover, the long-wavelength Earth model (LOWE) introduces large-scale structures outside of pre-existing local refinements. A full-waveform inversion for global anisotropic P-and S-wave speed structure over a total of 194 iterations with a minimum period of 50 s on a large data set of 1 hr of waveform data from 2,423 earthquakes and over 6 million source-receiver pairs ensures that regional updates in the crust and uppermost mantle translate into updates of deeper, global-scale structure. To test the performance of CSEM2, we evaluate waveform fits between observed and synthetic seismograms at 50 s for an independent data set on the global scale, and on the regional scale for lower periods. We accurately simulate waveforms within and across regional refinements, maintaining the original resolution of the submodels embedded in the global framework.</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":\"129 12\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029656\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029656\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029656","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

地质解释、震源反演和地面运动建模,以及其他应用,都需要联合解析地壳和地幔结构的模型。利用第二代协同地震地球模型(CSEM2),我们提出了一个服务于这一目的的全球多分辨率层析地球模型。该模型通过连续的区域和全球尺度的改进而发展。虽然第一代聚合区域模型,但通过这项研究,我们确保了所有单个子模型之间的一致性,从而形成了一个准确解释波跨尺度传播的模型。最近的区域层析模式被纳入其中,包括亚洲和非洲的大陆尺度反演,以及美国西部、安第斯山脉中部、伊朗和东南亚的区域反演。在所有区域改进中,超过79.3万对源-接收方对做出了贡献。此外,长波地球模型(LOWE)在预先存在的局部改进之外引入了大尺度结构。在2423次地震和600多万对源-接收对的1小时波形数据的大数据集上,对全球各向异性p波和s波速度结构进行了194次迭代,最小周期为50 s的全波形反演,确保了地壳和上地幔的区域更新转化为更深层次的全球尺度结构的更新。为了测试CSEM2的性能,我们在全球尺度上对独立数据集的50 s观测和合成地震图之间的波形拟合进行了评估,并在较低周期的区域尺度上对其进行了评估。我们精确地模拟区域内和区域间的波形,保持嵌入到全局框架中的子模型的原始分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Collaborative Seismic Earth Model: Generation 2

The Collaborative Seismic Earth Model: Generation 2

Geological interpretations, earthquake source inversions and ground motion modeling, among other applications, require models that jointly resolve crustal and mantle structure. With the second generation of the Collaborative Seismic Earth Model (CSEM2), we present a global multi-resolution tomographic Earth model that serves this purpose. The model evolves through successive regional- and global-scale refinements. While the first generation aggregated regional models, with this study, we ensure consistency between all individual submodels, resulting in a model that accurately explains wave propagation across scales. Recent regional tomographic models were incorporated, comprising continental-scale inversions for Asia and Africa, as well as regional inversions for the Western US, Central Andes, Iran, and Southeast Asia. Across all regional refinements, over 793,000 source-receiver pairs contributed. Moreover, the long-wavelength Earth model (LOWE) introduces large-scale structures outside of pre-existing local refinements. A full-waveform inversion for global anisotropic P-and S-wave speed structure over a total of 194 iterations with a minimum period of 50 s on a large data set of 1 hr of waveform data from 2,423 earthquakes and over 6 million source-receiver pairs ensures that regional updates in the crust and uppermost mantle translate into updates of deeper, global-scale structure. To test the performance of CSEM2, we evaluate waveform fits between observed and synthetic seismograms at 50 s for an independent data set on the global scale, and on the regional scale for lower periods. We accurately simulate waveforms within and across regional refinements, maintaining the original resolution of the submodels embedded in the global framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Solid Earth
Journal of Geophysical Research: Solid Earth Earth and Planetary Sciences-Geophysics
CiteScore
7.50
自引率
15.40%
发文量
559
期刊介绍: The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology. JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields. JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信