Chenchen Cai, Lixin Zhang, Xiangjiang Meng, Bin Luo, Yanhua Liu, Mingchao Chi, Jinlong Wang, Tao Liu, Song Zhang, Shuangfei Wang, Shuangxi Nie
{"title":"MXene密集桥接实现机械坚固的摩擦电气凝胶","authors":"Chenchen Cai, Lixin Zhang, Xiangjiang Meng, Bin Luo, Yanhua Liu, Mingchao Chi, Jinlong Wang, Tao Liu, Song Zhang, Shuangfei Wang, Shuangxi Nie","doi":"10.1021/acs.nanolett.4c04401","DOIUrl":null,"url":null,"abstract":"Aerogels are widely applied for construction, aerospace, military, and energy owing to their lightweight, high specific surface area, and high porosity. The high porosity of aerogels often leads to a lack of mechanical strength, which limits their applications. Here, this study reports a mechanically robust MXene/cellulose nanocrystal composite aerogel enabled by inducing dense bridging through salting-out. First, MXene sheets are bridged with cellulose molecular chains via hydrogen bonds, and further dense bridging is constructed by promoting hydrogen bond formation through salting-out. By enhancing hydrogen bonding, the interlayer spacing of MXene sheets is reduced and their orientation is improved, effectively increasing the energy dissipation capacity of the porous structure. The aerogel exhibits a Young’s modulus of 72.4 MPa, a specific modulus of 342.0 kN m/kg. An aerogel is used as a triboelectric material to construct a highly robust triboelectric nanogenerator. This study provides an effective strategy for the preparation of the mechanically robust aerogels.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"21 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanically Robust Triboelectric Aerogels Enabled by Dense Bridging of MXene\",\"authors\":\"Chenchen Cai, Lixin Zhang, Xiangjiang Meng, Bin Luo, Yanhua Liu, Mingchao Chi, Jinlong Wang, Tao Liu, Song Zhang, Shuangfei Wang, Shuangxi Nie\",\"doi\":\"10.1021/acs.nanolett.4c04401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerogels are widely applied for construction, aerospace, military, and energy owing to their lightweight, high specific surface area, and high porosity. The high porosity of aerogels often leads to a lack of mechanical strength, which limits their applications. Here, this study reports a mechanically robust MXene/cellulose nanocrystal composite aerogel enabled by inducing dense bridging through salting-out. First, MXene sheets are bridged with cellulose molecular chains via hydrogen bonds, and further dense bridging is constructed by promoting hydrogen bond formation through salting-out. By enhancing hydrogen bonding, the interlayer spacing of MXene sheets is reduced and their orientation is improved, effectively increasing the energy dissipation capacity of the porous structure. The aerogel exhibits a Young’s modulus of 72.4 MPa, a specific modulus of 342.0 kN m/kg. An aerogel is used as a triboelectric material to construct a highly robust triboelectric nanogenerator. This study provides an effective strategy for the preparation of the mechanically robust aerogels.\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.nanolett.4c04401\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04401","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Mechanically Robust Triboelectric Aerogels Enabled by Dense Bridging of MXene
Aerogels are widely applied for construction, aerospace, military, and energy owing to their lightweight, high specific surface area, and high porosity. The high porosity of aerogels often leads to a lack of mechanical strength, which limits their applications. Here, this study reports a mechanically robust MXene/cellulose nanocrystal composite aerogel enabled by inducing dense bridging through salting-out. First, MXene sheets are bridged with cellulose molecular chains via hydrogen bonds, and further dense bridging is constructed by promoting hydrogen bond formation through salting-out. By enhancing hydrogen bonding, the interlayer spacing of MXene sheets is reduced and their orientation is improved, effectively increasing the energy dissipation capacity of the porous structure. The aerogel exhibits a Young’s modulus of 72.4 MPa, a specific modulus of 342.0 kN m/kg. An aerogel is used as a triboelectric material to construct a highly robust triboelectric nanogenerator. This study provides an effective strategy for the preparation of the mechanically robust aerogels.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.