重叠投资组合的系统性风险:一个多目标优化框架

IF 7.5 1区 经济学 Q1 BUSINESS, FINANCE
Alessandro Sulas , Dietmar Maringer , Sandra Paterlini
{"title":"重叠投资组合的系统性风险:一个多目标优化框架","authors":"Alessandro Sulas ,&nbsp;Dietmar Maringer ,&nbsp;Sandra Paterlini","doi":"10.1016/j.irfa.2024.103794","DOIUrl":null,"url":null,"abstract":"<div><div>We present a multi-objective portfolio optimization framework that accounts for both systemic risk arising from overlapping portfolios and individual risk. To address non-convexity in the objective function, we introduce an Evolutionary Search algorithm that enables efficient exploration of the solution space. Applying our framework to EBA data on sovereign exposures, we find that minimizing systemic risk results in highly concentrated and diverse portfolios, adding empirical evidence to a growing literature on the ambiguous effects of diversification on systemic risk. In contrast, individual risk optimal allocations exhibit high portfolio diversification and homogeneity. By characterizing a set of Pareto frontiers, we identify a trade-off between the two risk components. Even a small preference for minimizing systemic risk leads to optimal portfolios on the frontier that differ significantly from the observed ones, suggesting potential inefficiencies in actual portfolio structures.</div></div>","PeriodicalId":48226,"journal":{"name":"International Review of Financial Analysis","volume":"97 ","pages":"Article 103794"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Systemic risk from overlapping portfolios: A multi-objective optimization framework\",\"authors\":\"Alessandro Sulas ,&nbsp;Dietmar Maringer ,&nbsp;Sandra Paterlini\",\"doi\":\"10.1016/j.irfa.2024.103794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a multi-objective portfolio optimization framework that accounts for both systemic risk arising from overlapping portfolios and individual risk. To address non-convexity in the objective function, we introduce an Evolutionary Search algorithm that enables efficient exploration of the solution space. Applying our framework to EBA data on sovereign exposures, we find that minimizing systemic risk results in highly concentrated and diverse portfolios, adding empirical evidence to a growing literature on the ambiguous effects of diversification on systemic risk. In contrast, individual risk optimal allocations exhibit high portfolio diversification and homogeneity. By characterizing a set of Pareto frontiers, we identify a trade-off between the two risk components. Even a small preference for minimizing systemic risk leads to optimal portfolios on the frontier that differ significantly from the observed ones, suggesting potential inefficiencies in actual portfolio structures.</div></div>\",\"PeriodicalId\":48226,\"journal\":{\"name\":\"International Review of Financial Analysis\",\"volume\":\"97 \",\"pages\":\"Article 103794\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Financial Analysis\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1057521924007269\",\"RegionNum\":1,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Financial Analysis","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1057521924007269","RegionNum":1,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个多目标投资组合优化框架,该框架既考虑了重叠投资组合引起的系统风险,也考虑了个人风险。为了解决目标函数的非凸性,我们引入了一种进化搜索算法,该算法能够有效地探索解空间。将我们的框架应用于主权风险敞口的EBA数据,我们发现最小化系统性风险会导致高度集中和多样化的投资组合,这为越来越多的关于多元化对系统性风险的模糊影响的文献提供了经验证据。个体风险最优配置表现出较高的投资组合分散性和同质性。通过描述一组帕累托边界,我们确定了两种风险成分之间的权衡。即使是对最小化系统性风险的微小偏好,也会导致边界上的最优投资组合与观察到的投资组合显著不同,这表明实际投资组合结构中存在潜在的低效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Systemic risk from overlapping portfolios: A multi-objective optimization framework
We present a multi-objective portfolio optimization framework that accounts for both systemic risk arising from overlapping portfolios and individual risk. To address non-convexity in the objective function, we introduce an Evolutionary Search algorithm that enables efficient exploration of the solution space. Applying our framework to EBA data on sovereign exposures, we find that minimizing systemic risk results in highly concentrated and diverse portfolios, adding empirical evidence to a growing literature on the ambiguous effects of diversification on systemic risk. In contrast, individual risk optimal allocations exhibit high portfolio diversification and homogeneity. By characterizing a set of Pareto frontiers, we identify a trade-off between the two risk components. Even a small preference for minimizing systemic risk leads to optimal portfolios on the frontier that differ significantly from the observed ones, suggesting potential inefficiencies in actual portfolio structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
9.80%
发文量
366
期刊介绍: The International Review of Financial Analysis (IRFA) is an impartial refereed journal designed to serve as a platform for high-quality financial research. It welcomes a diverse range of financial research topics and maintains an unbiased selection process. While not limited to U.S.-centric subjects, IRFA, as its title suggests, is open to valuable research contributions from around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信