Kunlun Wu , Shunzhuo E , Ning Yang , Anguo Zhang , Xiaorong Yan , Chaoxu Mu , Yongduan Song
{"title":"基于混合高阶信息瓶颈驱动的脉冲神经网络增强生物医学信号识别的新方法。","authors":"Kunlun Wu , Shunzhuo E , Ning Yang , Anguo Zhang , Xiaorong Yan , Chaoxu Mu , Yongduan Song","doi":"10.1016/j.neunet.2024.106976","DOIUrl":null,"url":null,"abstract":"<div><div>Biomedical signals, encapsulating vital physiological information, are pivotal in elucidating human traits and conditions, serving as a cornerstone for advancing human–machine interfaces. Nonetheless, the fidelity of biomedical signal interpretation is frequently compromised by pervasive noise sources such as skin, motion, and equipment interference, posing formidable challenges to precision recognition tasks. Concurrently, the burgeoning adoption of intelligent wearable devices illuminates a societal shift towards enhancing life and work through technological integration. This surge in popularity underscores the imperative for efficient, noise-resilient biomedical signal recognition methodologies, a quest that is both challenging and profoundly impactful. This study proposes a novel approach to enhancing biomedical signal recognition. The proposed approach employs a hierarchical information bottleneck mechanism within SNNs, quantifying the mutual information in different orders based on the depth of information flow in the network. Subsequently, these mutual information, together with the network’s output and category labels, are restructured based on information theory principles to form the loss function used for training. A series of theoretical analyses and substantial experimental results have shown that this method can effectively compress noise in the data, and on the premise of low computational cost, it can also significantly outperform its vanilla counterpart in terms of classification performance.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"Article 106976"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel approach to enhancing biomedical signal recognition via hybrid high-order information bottleneck driven spiking neural networks\",\"authors\":\"Kunlun Wu , Shunzhuo E , Ning Yang , Anguo Zhang , Xiaorong Yan , Chaoxu Mu , Yongduan Song\",\"doi\":\"10.1016/j.neunet.2024.106976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomedical signals, encapsulating vital physiological information, are pivotal in elucidating human traits and conditions, serving as a cornerstone for advancing human–machine interfaces. Nonetheless, the fidelity of biomedical signal interpretation is frequently compromised by pervasive noise sources such as skin, motion, and equipment interference, posing formidable challenges to precision recognition tasks. Concurrently, the burgeoning adoption of intelligent wearable devices illuminates a societal shift towards enhancing life and work through technological integration. This surge in popularity underscores the imperative for efficient, noise-resilient biomedical signal recognition methodologies, a quest that is both challenging and profoundly impactful. This study proposes a novel approach to enhancing biomedical signal recognition. The proposed approach employs a hierarchical information bottleneck mechanism within SNNs, quantifying the mutual information in different orders based on the depth of information flow in the network. Subsequently, these mutual information, together with the network’s output and category labels, are restructured based on information theory principles to form the loss function used for training. A series of theoretical analyses and substantial experimental results have shown that this method can effectively compress noise in the data, and on the premise of low computational cost, it can also significantly outperform its vanilla counterpart in terms of classification performance.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"Article 106976\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024009055\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024009055","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A novel approach to enhancing biomedical signal recognition via hybrid high-order information bottleneck driven spiking neural networks
Biomedical signals, encapsulating vital physiological information, are pivotal in elucidating human traits and conditions, serving as a cornerstone for advancing human–machine interfaces. Nonetheless, the fidelity of biomedical signal interpretation is frequently compromised by pervasive noise sources such as skin, motion, and equipment interference, posing formidable challenges to precision recognition tasks. Concurrently, the burgeoning adoption of intelligent wearable devices illuminates a societal shift towards enhancing life and work through technological integration. This surge in popularity underscores the imperative for efficient, noise-resilient biomedical signal recognition methodologies, a quest that is both challenging and profoundly impactful. This study proposes a novel approach to enhancing biomedical signal recognition. The proposed approach employs a hierarchical information bottleneck mechanism within SNNs, quantifying the mutual information in different orders based on the depth of information flow in the network. Subsequently, these mutual information, together with the network’s output and category labels, are restructured based on information theory principles to form the loss function used for training. A series of theoretical analyses and substantial experimental results have shown that this method can effectively compress noise in the data, and on the premise of low computational cost, it can also significantly outperform its vanilla counterpart in terms of classification performance.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.