基于人工智能的老龄化与长寿研究与实践干预评估的验证要求

Georg Fuellen, Anton Kulaga, Sebastian Lobentanzer, Maximilian Unfried, Roberto A Avelar, Daniel Palmer, Brian K Kennedy
{"title":"基于人工智能的老龄化与长寿研究与实践干预评估的验证要求","authors":"Georg Fuellen, Anton Kulaga, Sebastian Lobentanzer, Maximilian Unfried, Roberto A Avelar, Daniel Palmer, Brian K Kennedy","doi":"10.1016/j.arr.2024.102617","DOIUrl":null,"url":null,"abstract":"<p><p>The field of aging and longevity research is overwhelmed by vast amounts of data, calling for the use of Artificial Intelligence (AI), including Large Language Models (LLMs), for the evaluation of geroprotective interventions. Such evaluations should be correct, useful, comprehensive, explainable, and they should consider causality, interdisciplinarity, adherence to standards, longitudinal data and known aging biology. In particular, comprehensive analyses should go beyond comparing data based on canonical biomedical databases, suggesting the use of AI to interpret changes in biomarkers and outcomes. Our requirements motivate the use of LLMs with Knowledge Graphs and dedicated workflows employing, e.g., Retrieval-Augmented Generation. While naive trust in the responses of AI tools can cause harm, adding our requirements to LLM queries can improve response quality, calling for benchmarking efforts and justifying the informed use of LLMs for advice on longevity interventions.</p>","PeriodicalId":93862,"journal":{"name":"Ageing research reviews","volume":" ","pages":"102617"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation requirements for AI-based intervention-evaluation in aging and longevity research and practice.\",\"authors\":\"Georg Fuellen, Anton Kulaga, Sebastian Lobentanzer, Maximilian Unfried, Roberto A Avelar, Daniel Palmer, Brian K Kennedy\",\"doi\":\"10.1016/j.arr.2024.102617\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The field of aging and longevity research is overwhelmed by vast amounts of data, calling for the use of Artificial Intelligence (AI), including Large Language Models (LLMs), for the evaluation of geroprotective interventions. Such evaluations should be correct, useful, comprehensive, explainable, and they should consider causality, interdisciplinarity, adherence to standards, longitudinal data and known aging biology. In particular, comprehensive analyses should go beyond comparing data based on canonical biomedical databases, suggesting the use of AI to interpret changes in biomarkers and outcomes. Our requirements motivate the use of LLMs with Knowledge Graphs and dedicated workflows employing, e.g., Retrieval-Augmented Generation. While naive trust in the responses of AI tools can cause harm, adding our requirements to LLM queries can improve response quality, calling for benchmarking efforts and justifying the informed use of LLMs for advice on longevity interventions.</p>\",\"PeriodicalId\":93862,\"journal\":{\"name\":\"Ageing research reviews\",\"volume\":\" \",\"pages\":\"102617\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ageing research reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.arr.2024.102617\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ageing research reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.arr.2024.102617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

老龄化和长寿研究领域被大量数据淹没,需要使用人工智能(AI),包括大型语言模型(LLMs),来评估老年保护干预措施。这样的评估应该是正确的、有用的、全面的、可解释的,并且应该考虑因果关系、跨学科性、对标准的遵守、纵向数据和已知的衰老生物学。特别是,综合分析应超越基于规范生物医学数据库的数据比较,建议使用人工智能来解释生物标志物和结果的变化。我们的需求激发了法学硕士与知识图和专用工作流的使用,例如,检索增强生成。虽然对人工智能工具的响应的天真信任可能会造成伤害,但将我们的需求添加到法学硕士查询中可以提高响应质量,呼吁进行基准测试,并证明法学硕士在长寿干预方面的明智使用是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Validation requirements for AI-based intervention-evaluation in aging and longevity research and practice.

The field of aging and longevity research is overwhelmed by vast amounts of data, calling for the use of Artificial Intelligence (AI), including Large Language Models (LLMs), for the evaluation of geroprotective interventions. Such evaluations should be correct, useful, comprehensive, explainable, and they should consider causality, interdisciplinarity, adherence to standards, longitudinal data and known aging biology. In particular, comprehensive analyses should go beyond comparing data based on canonical biomedical databases, suggesting the use of AI to interpret changes in biomarkers and outcomes. Our requirements motivate the use of LLMs with Knowledge Graphs and dedicated workflows employing, e.g., Retrieval-Augmented Generation. While naive trust in the responses of AI tools can cause harm, adding our requirements to LLM queries can improve response quality, calling for benchmarking efforts and justifying the informed use of LLMs for advice on longevity interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信