从scRNA-seq数据中系统鉴定过渡细胞的统计方法。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Cell Reports Methods Pub Date : 2024-12-16 Epub Date: 2024-12-06 DOI:10.1016/j.crmeth.2024.100913
Yuanxin Wang, Merve Dede, Vakul Mohanty, Jinzhuang Dou, Ziyi Li, Ken Chen
{"title":"从scRNA-seq数据中系统鉴定过渡细胞的统计方法。","authors":"Yuanxin Wang, Merve Dede, Vakul Mohanty, Jinzhuang Dou, Ziyi Li, Ken Chen","doi":"10.1016/j.crmeth.2024.100913","DOIUrl":null,"url":null,"abstract":"<p><p>Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100913"},"PeriodicalIF":4.3000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704623/pdf/","citationCount":"0","resultStr":"{\"title\":\"A statistical approach for systematic identification of transition cells from scRNA-seq data.\",\"authors\":\"Yuanxin Wang, Merve Dede, Vakul Mohanty, Jinzhuang Dou, Ziyi Li, Ken Chen\",\"doi\":\"10.1016/j.crmeth.2024.100913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"100913\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11704623/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

解码细胞状态转换对于理解发育和疾病中的复杂生物过程至关重要。虽然单细胞RNA测序(scRNA-seq)的最新进展提供了对细胞轨迹的深入了解,但现有的工具主要研究表达状态而不是调节状态的变化。我们提出CellTran,这是一种统计方法,利用配对基因表达相关性从scRNA-seq数据中检测过渡细胞,而无需明确解决基因调控网络。将我们的方法应用于各种情况,包括组织再生、胚胎发育、侵袭前病变和疫苗接种后的体液反应,揭示了过渡细胞及其独特的基因表达谱。我们的研究揭示了驱动细胞状态转变的潜在分子机制,增强了我们识别疾病干预治疗靶点的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A statistical approach for systematic identification of transition cells from scRNA-seq data.

Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信