功率超声换能器模型的参数映射。

IF 3.8 2区 物理与天体物理 Q1 ACOUSTICS
Junfan Fu, Bin Lin, Tianyi Sui, Baokun Dong
{"title":"功率超声换能器模型的参数映射。","authors":"Junfan Fu, Bin Lin, Tianyi Sui, Baokun Dong","doi":"10.1016/j.ultras.2024.107533","DOIUrl":null,"url":null,"abstract":"<p><p>The vibration and electrical characteristics of transducer is determined by material coefficients and geometry, with material coefficients being susceptible to factors including frequency, pressure, and temperature, which leads to poor repeatability of transducer characteristics. Consequently, it is challenging to provide an accurate theoretical model to predict the characteristics based on the current material coefficients. To achieve a more accurate transducer model, a measurement method is proposed based on the mapping between material coefficients and transducer characteristic parameters to obtain accurate coefficients under working conditions with simple equipment and lower costs. The mapping is analyzed based on the transducer model, identifying five key coefficients. An iterative optimization method is then developed to measure these coefficients. Additionally, the genetic algorithm (GA) method is utilized for cross-checking. Transducers made from seven different materials and with varying lengths are measured, and the coefficients are obtained by both methods. With the obtained coefficients, the vibration and electrical characteristics of multi-material transducers is predicted and found to be in good agreement with the measured values, validating the transducer model and the coefficient measurement method. These coefficients are then compared with results obtained from a dynamic mechanical analyzer (DMA) and reference values. The results demonstrate that theoretical coefficients obtained by the proposed method lead to more accurate predictions for the vibration and electrical characteristics compared to those obtained from the DMA and reference values. Furthermore, the influence of frequency on the coefficients is studied by the method. The iterative method and GA method are compared in terms of their relative errors.</p>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"148 ","pages":"107533"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The parameter mapping of power ultrasonic transducer model.\",\"authors\":\"Junfan Fu, Bin Lin, Tianyi Sui, Baokun Dong\",\"doi\":\"10.1016/j.ultras.2024.107533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The vibration and electrical characteristics of transducer is determined by material coefficients and geometry, with material coefficients being susceptible to factors including frequency, pressure, and temperature, which leads to poor repeatability of transducer characteristics. Consequently, it is challenging to provide an accurate theoretical model to predict the characteristics based on the current material coefficients. To achieve a more accurate transducer model, a measurement method is proposed based on the mapping between material coefficients and transducer characteristic parameters to obtain accurate coefficients under working conditions with simple equipment and lower costs. The mapping is analyzed based on the transducer model, identifying five key coefficients. An iterative optimization method is then developed to measure these coefficients. Additionally, the genetic algorithm (GA) method is utilized for cross-checking. Transducers made from seven different materials and with varying lengths are measured, and the coefficients are obtained by both methods. With the obtained coefficients, the vibration and electrical characteristics of multi-material transducers is predicted and found to be in good agreement with the measured values, validating the transducer model and the coefficient measurement method. These coefficients are then compared with results obtained from a dynamic mechanical analyzer (DMA) and reference values. The results demonstrate that theoretical coefficients obtained by the proposed method lead to more accurate predictions for the vibration and electrical characteristics compared to those obtained from the DMA and reference values. Furthermore, the influence of frequency on the coefficients is studied by the method. The iterative method and GA method are compared in terms of their relative errors.</p>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"148 \",\"pages\":\"107533\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ultras.2024.107533\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1016/j.ultras.2024.107533","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

换能器的振动和电气特性是由材料系数和几何形状决定的,而材料系数容易受到频率、压力、温度等因素的影响,导致换能器特性的可重复性差。因此,提供一个准确的理论模型来预测基于当前材料系数的特性是具有挑战性的。为了获得更精确的换能器模型,提出了一种基于材料系数与换能器特性参数映射关系的测量方法,以简单的设备和较低的成本获得工作条件下的准确系数。基于换能器模型对映射进行分析,确定了五个关键系数。然后提出了一种迭代优化方法来测量这些系数。此外,采用遗传算法(GA)进行交叉检查。测量了由七种不同材料和不同长度制成的换能器,并通过两种方法获得了系数。利用所得系数对多材料换能器的振动特性和电特性进行了预测,结果与实测值吻合较好,验证了换能器模型和系数测量方法的正确性。然后将这些系数与动态机械分析仪(DMA)和参考值获得的结果进行比较。结果表明,与从DMA和参考值获得的理论系数相比,用该方法获得的理论系数可以更准确地预测振动和电特性。此外,还研究了频率对系数的影响。比较了迭代法和遗传算法的相对误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The parameter mapping of power ultrasonic transducer model.

The vibration and electrical characteristics of transducer is determined by material coefficients and geometry, with material coefficients being susceptible to factors including frequency, pressure, and temperature, which leads to poor repeatability of transducer characteristics. Consequently, it is challenging to provide an accurate theoretical model to predict the characteristics based on the current material coefficients. To achieve a more accurate transducer model, a measurement method is proposed based on the mapping between material coefficients and transducer characteristic parameters to obtain accurate coefficients under working conditions with simple equipment and lower costs. The mapping is analyzed based on the transducer model, identifying five key coefficients. An iterative optimization method is then developed to measure these coefficients. Additionally, the genetic algorithm (GA) method is utilized for cross-checking. Transducers made from seven different materials and with varying lengths are measured, and the coefficients are obtained by both methods. With the obtained coefficients, the vibration and electrical characteristics of multi-material transducers is predicted and found to be in good agreement with the measured values, validating the transducer model and the coefficient measurement method. These coefficients are then compared with results obtained from a dynamic mechanical analyzer (DMA) and reference values. The results demonstrate that theoretical coefficients obtained by the proposed method lead to more accurate predictions for the vibration and electrical characteristics compared to those obtained from the DMA and reference values. Furthermore, the influence of frequency on the coefficients is studied by the method. The iterative method and GA method are compared in terms of their relative errors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ultrasonics
Ultrasonics 医学-核医学
CiteScore
7.60
自引率
19.00%
发文量
186
审稿时长
3.9 months
期刊介绍: Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed. As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信