Gonglin Wang, Caibin Xu, Quanqing Lai, Mingxi Deng
{"title":"利用超声纵波准静态分量对高密度聚乙烯进行SAFT成像。","authors":"Gonglin Wang, Caibin Xu, Quanqing Lai, Mingxi Deng","doi":"10.1016/j.ultras.2024.107534","DOIUrl":null,"url":null,"abstract":"<div><div>High-density polyethylene (HDPE) is extensively utilized across various industries, including nuclear power, primarily for its exceptional properties. However, there are challenges with traditional linear ultrasound imaging systems due to the significant thicknesses and the highly attenuative of HDPE. High-frequency carrier waves can offer better imaging resolution but also suffer higher acoustic attenuation, which limits the propagation distance of primary longitudinal waves (PLW) and makes it difficult to detect defects within thick HDPEs. On the other hand, using low-frequency PLW for defect detection presents challenges in resolution despite lower attenuation and longer propagation distances. This study proposes a defect imaging method for HDPEs by using quasi-static components (QSC) generated along with high-frequency fundamental wave propagation because of the nonlinear effect. The QSC has the advantage of low attenuation because its carrier frequency is zero, which can propagate a long distance in a high acoustic attention medium like HDPE. A nonlinear ultrasonic imaging approach combining the QSC and synthetic aperture focusing technique is proposed for defect imaging in HDPEs. Experiments on HDPEs with single and multiple defects are conducted to verify the performance of the proposed method. For comparison, the imaging results using traditional linear ultrasounds with high (2.5 MHz) and low (0.5 MHz) carrier frequencies are also provided. The results show the proposed method has better imaging performance over traditional linear ultrasound imaging methods for defect defections in high acoustic attention medium.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"148 ","pages":"Article 107534"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAFT imaging for high-density polyethylene using quasi-static components of ultrasonic longitudinal waves\",\"authors\":\"Gonglin Wang, Caibin Xu, Quanqing Lai, Mingxi Deng\",\"doi\":\"10.1016/j.ultras.2024.107534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-density polyethylene (HDPE) is extensively utilized across various industries, including nuclear power, primarily for its exceptional properties. However, there are challenges with traditional linear ultrasound imaging systems due to the significant thicknesses and the highly attenuative of HDPE. High-frequency carrier waves can offer better imaging resolution but also suffer higher acoustic attenuation, which limits the propagation distance of primary longitudinal waves (PLW) and makes it difficult to detect defects within thick HDPEs. On the other hand, using low-frequency PLW for defect detection presents challenges in resolution despite lower attenuation and longer propagation distances. This study proposes a defect imaging method for HDPEs by using quasi-static components (QSC) generated along with high-frequency fundamental wave propagation because of the nonlinear effect. The QSC has the advantage of low attenuation because its carrier frequency is zero, which can propagate a long distance in a high acoustic attention medium like HDPE. A nonlinear ultrasonic imaging approach combining the QSC and synthetic aperture focusing technique is proposed for defect imaging in HDPEs. Experiments on HDPEs with single and multiple defects are conducted to verify the performance of the proposed method. For comparison, the imaging results using traditional linear ultrasounds with high (2.5 MHz) and low (0.5 MHz) carrier frequencies are also provided. The results show the proposed method has better imaging performance over traditional linear ultrasound imaging methods for defect defections in high acoustic attention medium.</div></div>\",\"PeriodicalId\":23522,\"journal\":{\"name\":\"Ultrasonics\",\"volume\":\"148 \",\"pages\":\"Article 107534\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0041624X2400297X\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X2400297X","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
SAFT imaging for high-density polyethylene using quasi-static components of ultrasonic longitudinal waves
High-density polyethylene (HDPE) is extensively utilized across various industries, including nuclear power, primarily for its exceptional properties. However, there are challenges with traditional linear ultrasound imaging systems due to the significant thicknesses and the highly attenuative of HDPE. High-frequency carrier waves can offer better imaging resolution but also suffer higher acoustic attenuation, which limits the propagation distance of primary longitudinal waves (PLW) and makes it difficult to detect defects within thick HDPEs. On the other hand, using low-frequency PLW for defect detection presents challenges in resolution despite lower attenuation and longer propagation distances. This study proposes a defect imaging method for HDPEs by using quasi-static components (QSC) generated along with high-frequency fundamental wave propagation because of the nonlinear effect. The QSC has the advantage of low attenuation because its carrier frequency is zero, which can propagate a long distance in a high acoustic attention medium like HDPE. A nonlinear ultrasonic imaging approach combining the QSC and synthetic aperture focusing technique is proposed for defect imaging in HDPEs. Experiments on HDPEs with single and multiple defects are conducted to verify the performance of the proposed method. For comparison, the imaging results using traditional linear ultrasounds with high (2.5 MHz) and low (0.5 MHz) carrier frequencies are also provided. The results show the proposed method has better imaging performance over traditional linear ultrasound imaging methods for defect defections in high acoustic attention medium.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.