具有非脆弱隐藏信息和致动器饱和的随机半马尔可夫跳变神经网络均方同步优化控制。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Networks Pub Date : 2025-03-01 Epub Date: 2024-11-23 DOI:10.1016/j.neunet.2024.106942
Zou Yang, Jun Wang, Kaibo Shi, Xiao Cai, Sheng Han
{"title":"具有非脆弱隐藏信息和致动器饱和的随机半马尔可夫跳变神经网络均方同步优化控制。","authors":"Zou Yang, Jun Wang, Kaibo Shi, Xiao Cai, Sheng Han","doi":"10.1016/j.neunet.2024.106942","DOIUrl":null,"url":null,"abstract":"<p><p>This paper studies the asynchronous output feedback control and H<sub>∞</sub> synchronization problems for a class of continuous-time stochastic hidden semi-Markov jump neural networks (SMJNNs) affected by actuator saturation. Initially, a novel neural networks (NNs) model is constructed, incorporating semi-Markov process (SMP), hidden information, and Brownian motion to accurately simulate the complexity and uncertainty of real-world environments. Secondly, acknowledging system mode mismatches and the need for robust anti-interference capabilities, a non-fragile controller based on hidden information is proposed. The designed controller effectively mitigates the impact of uncertainties enhancing system reliability. Furthermore, sufficient conditions for stochastic mean square synchronization (MSS) within the domain of attraction are provided, and optimal control is achieved through the construction of a Lyapunov function based on SMP. Finally, the feasibility of the proposed method is verified through numerical examples.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106942"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization control for mean square synchronization of stochastic semi-Markov jump neural networks with non-fragile hidden information and actuator saturation.\",\"authors\":\"Zou Yang, Jun Wang, Kaibo Shi, Xiao Cai, Sheng Han\",\"doi\":\"10.1016/j.neunet.2024.106942\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper studies the asynchronous output feedback control and H<sub>∞</sub> synchronization problems for a class of continuous-time stochastic hidden semi-Markov jump neural networks (SMJNNs) affected by actuator saturation. Initially, a novel neural networks (NNs) model is constructed, incorporating semi-Markov process (SMP), hidden information, and Brownian motion to accurately simulate the complexity and uncertainty of real-world environments. Secondly, acknowledging system mode mismatches and the need for robust anti-interference capabilities, a non-fragile controller based on hidden information is proposed. The designed controller effectively mitigates the impact of uncertainties enhancing system reliability. Furthermore, sufficient conditions for stochastic mean square synchronization (MSS) within the domain of attraction are provided, and optimal control is achieved through the construction of a Lyapunov function based on SMP. Finally, the feasibility of the proposed method is verified through numerical examples.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106942\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106942\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106942","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类受致动器饱和影响的连续时间随机隐半马尔可夫跳变神经网络(SMJNNs)的异步输出反馈控制和H∞同步问题。首先,构建了一种新的神经网络(nn)模型,结合半马尔可夫过程(SMP)、隐藏信息和布朗运动来精确模拟现实环境的复杂性和不确定性。其次,考虑到系统模式不匹配和对鲁棒抗干扰能力的需求,提出了一种基于隐藏信息的非脆弱控制器。所设计的控制器有效地减轻了不确定性的影响,提高了系统的可靠性。给出了引力域内随机均方同步(MSS)的充分条件,并通过构造基于SMP的Lyapunov函数实现了最优控制。最后,通过数值算例验证了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization control for mean square synchronization of stochastic semi-Markov jump neural networks with non-fragile hidden information and actuator saturation.

This paper studies the asynchronous output feedback control and H synchronization problems for a class of continuous-time stochastic hidden semi-Markov jump neural networks (SMJNNs) affected by actuator saturation. Initially, a novel neural networks (NNs) model is constructed, incorporating semi-Markov process (SMP), hidden information, and Brownian motion to accurately simulate the complexity and uncertainty of real-world environments. Secondly, acknowledging system mode mismatches and the need for robust anti-interference capabilities, a non-fragile controller based on hidden information is proposed. The designed controller effectively mitigates the impact of uncertainties enhancing system reliability. Furthermore, sufficient conditions for stochastic mean square synchronization (MSS) within the domain of attraction are provided, and optimal control is achieved through the construction of a Lyapunov function based on SMP. Finally, the feasibility of the proposed method is verified through numerical examples.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信