Xiaojun Zhou, Chunna Zhao, Yaqun Huang, Chengli Zhou, Junjie Ye
{"title":"基于多层感知器的改进分数阶梯度下降方法。","authors":"Xiaojun Zhou, Chunna Zhao, Yaqun Huang, Chengli Zhou, Junjie Ye","doi":"10.1016/j.neunet.2024.106970","DOIUrl":null,"url":null,"abstract":"<p><p>The fractional-order gradient descent (FOGD) method has been employed by numerous scholars in Artificial Neural Networks (ANN), with its superior performance validated both theoretically and experimentally. However, current FOGD methods only apply fractional-order differentiation to the loss function. The application of FOGD based on Autograd to hidden layers leverages the characteristics of fractional-order differentiation, significantly enhancing its flexibility. Moreover, the implementation of FOGD in the hidden layers serves as a necessary foundation for establishing a family of fractional-order deep learning optimizers, facilitating the widespread application of FOGD in deep learning. This paper proposes an improved fractional-order gradient descent (IFOGD) method based on Multilayer Perceptron (MLP). Firstly, a fractional matrix differentiation algorithm and its fractional matrix differentiation solver is proposed based on MLP, ensuring that IFOGD can be applied within the hidden layers. Subsequently, we overcome the issue of incorrect backpropagation direction caused by the absolute value symbol, ensuring that the IFOGD method does not cause divergence in the value of the loss function. Thirdly, fractional-order Autograd (FOAutograd) is proposed based on PyTorch by reconstructing Linear layer and Mean Squared Error Loss module. By combining FOAutograd with first-order adaptive deep learning optimizers, parameter matrices in each layer of ANN can be updated using fractional-order gradients. Finally, we compare and analyze the performance of IFOGD with other methods in simulation experiments and time series prediction tasks. The experimental results demonstrate that the IFOGD method exhibits performances.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106970"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved fractional-order gradient descent method based on multilayer perceptron.\",\"authors\":\"Xiaojun Zhou, Chunna Zhao, Yaqun Huang, Chengli Zhou, Junjie Ye\",\"doi\":\"10.1016/j.neunet.2024.106970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The fractional-order gradient descent (FOGD) method has been employed by numerous scholars in Artificial Neural Networks (ANN), with its superior performance validated both theoretically and experimentally. However, current FOGD methods only apply fractional-order differentiation to the loss function. The application of FOGD based on Autograd to hidden layers leverages the characteristics of fractional-order differentiation, significantly enhancing its flexibility. Moreover, the implementation of FOGD in the hidden layers serves as a necessary foundation for establishing a family of fractional-order deep learning optimizers, facilitating the widespread application of FOGD in deep learning. This paper proposes an improved fractional-order gradient descent (IFOGD) method based on Multilayer Perceptron (MLP). Firstly, a fractional matrix differentiation algorithm and its fractional matrix differentiation solver is proposed based on MLP, ensuring that IFOGD can be applied within the hidden layers. Subsequently, we overcome the issue of incorrect backpropagation direction caused by the absolute value symbol, ensuring that the IFOGD method does not cause divergence in the value of the loss function. Thirdly, fractional-order Autograd (FOAutograd) is proposed based on PyTorch by reconstructing Linear layer and Mean Squared Error Loss module. By combining FOAutograd with first-order adaptive deep learning optimizers, parameter matrices in each layer of ANN can be updated using fractional-order gradients. Finally, we compare and analyze the performance of IFOGD with other methods in simulation experiments and time series prediction tasks. The experimental results demonstrate that the IFOGD method exhibits performances.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106970\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106970\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106970","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improved fractional-order gradient descent method based on multilayer perceptron.
The fractional-order gradient descent (FOGD) method has been employed by numerous scholars in Artificial Neural Networks (ANN), with its superior performance validated both theoretically and experimentally. However, current FOGD methods only apply fractional-order differentiation to the loss function. The application of FOGD based on Autograd to hidden layers leverages the characteristics of fractional-order differentiation, significantly enhancing its flexibility. Moreover, the implementation of FOGD in the hidden layers serves as a necessary foundation for establishing a family of fractional-order deep learning optimizers, facilitating the widespread application of FOGD in deep learning. This paper proposes an improved fractional-order gradient descent (IFOGD) method based on Multilayer Perceptron (MLP). Firstly, a fractional matrix differentiation algorithm and its fractional matrix differentiation solver is proposed based on MLP, ensuring that IFOGD can be applied within the hidden layers. Subsequently, we overcome the issue of incorrect backpropagation direction caused by the absolute value symbol, ensuring that the IFOGD method does not cause divergence in the value of the loss function. Thirdly, fractional-order Autograd (FOAutograd) is proposed based on PyTorch by reconstructing Linear layer and Mean Squared Error Loss module. By combining FOAutograd with first-order adaptive deep learning optimizers, parameter matrices in each layer of ANN can be updated using fractional-order gradients. Finally, we compare and analyze the performance of IFOGD with other methods in simulation experiments and time series prediction tasks. The experimental results demonstrate that the IFOGD method exhibits performances.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.