对抗性训练的数据依赖稳定性分析。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Neural Networks Pub Date : 2025-03-01 Epub Date: 2024-12-04 DOI:10.1016/j.neunet.2024.106983
Yihan Wang, Shuang Liu, Xiao-Shan Gao
{"title":"对抗性训练的数据依赖稳定性分析。","authors":"Yihan Wang, Shuang Liu, Xiao-Shan Gao","doi":"10.1016/j.neunet.2024.106983","DOIUrl":null,"url":null,"abstract":"<p><p>Stability analysis is an essential aspect of studying the generalization ability of deep learning, as it involves deriving generalization bounds for stochastic gradient descent-based training algorithms. Adversarial training is the most widely used defense against adversarial attacks. However, previous generalization bounds for adversarial training have not included information regarding data distribution. In this paper, we fill this gap by providing generalization bounds for stochastic gradient descent-based adversarial training that incorporate data distribution information. We utilize the concepts of on-average stability and high-order approximate Lipschitz conditions to examine how changes in data distribution and adversarial budget can affect robust generalization gaps. Our derived generalization bounds for both convex and non-convex losses are at least as good as the uniform stability-based counterparts which do not include data distribution information. Furthermore, our findings demonstrate how distribution shifts from data poisoning attacks can impact robust generalization.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"183 ","pages":"106983"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data-dependent stability analysis of adversarial training.\",\"authors\":\"Yihan Wang, Shuang Liu, Xiao-Shan Gao\",\"doi\":\"10.1016/j.neunet.2024.106983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stability analysis is an essential aspect of studying the generalization ability of deep learning, as it involves deriving generalization bounds for stochastic gradient descent-based training algorithms. Adversarial training is the most widely used defense against adversarial attacks. However, previous generalization bounds for adversarial training have not included information regarding data distribution. In this paper, we fill this gap by providing generalization bounds for stochastic gradient descent-based adversarial training that incorporate data distribution information. We utilize the concepts of on-average stability and high-order approximate Lipschitz conditions to examine how changes in data distribution and adversarial budget can affect robust generalization gaps. Our derived generalization bounds for both convex and non-convex losses are at least as good as the uniform stability-based counterparts which do not include data distribution information. Furthermore, our findings demonstrate how distribution shifts from data poisoning attacks can impact robust generalization.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"183 \",\"pages\":\"106983\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.106983\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.106983","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

稳定性分析是研究深度学习泛化能力的一个重要方面,因为它涉及到基于随机梯度下降的训练算法的泛化界的推导。对抗性训练是对抗对抗性攻击最广泛使用的防御手段。然而,以前对抗性训练的泛化界限没有包括有关数据分布的信息。在本文中,我们通过提供包含数据分布信息的基于随机梯度下降的对抗训练的泛化边界来填补这一空白。我们利用平均稳定性和高阶近似Lipschitz条件的概念来研究数据分布和对抗预算的变化如何影响鲁棒泛化差距。我们导出的凸损失和非凸损失的泛化界至少与不包含数据分布信息的基于均匀稳定性的对应物一样好。此外,我们的研究结果证明了数据中毒攻击的分布转移如何影响鲁棒泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data-dependent stability analysis of adversarial training.

Stability analysis is an essential aspect of studying the generalization ability of deep learning, as it involves deriving generalization bounds for stochastic gradient descent-based training algorithms. Adversarial training is the most widely used defense against adversarial attacks. However, previous generalization bounds for adversarial training have not included information regarding data distribution. In this paper, we fill this gap by providing generalization bounds for stochastic gradient descent-based adversarial training that incorporate data distribution information. We utilize the concepts of on-average stability and high-order approximate Lipschitz conditions to examine how changes in data distribution and adversarial budget can affect robust generalization gaps. Our derived generalization bounds for both convex and non-convex losses are at least as good as the uniform stability-based counterparts which do not include data distribution information. Furthermore, our findings demonstrate how distribution shifts from data poisoning attacks can impact robust generalization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信