节拍性耳聋对时间偏差的异常脑电反应。

IF 2 3区 心理学 Q3 BEHAVIORAL SCIENCES
Neuropsychologia Pub Date : 2025-01-29 Epub Date: 2024-12-04 DOI:10.1016/j.neuropsychologia.2024.109060
Véronique Martel, Isabelle Peretz
{"title":"节拍性耳聋对时间偏差的异常脑电反应。","authors":"Véronique Martel, Isabelle Peretz","doi":"10.1016/j.neuropsychologia.2024.109060","DOIUrl":null,"url":null,"abstract":"<p><p>Humans have the spontaneous capacity to track the beat of music. Yet some individuals show marked difficulties. To investigate the neural correlates of this condition known as beat deafness, the cortical electric activity of ten beat-deaf adults, the largest cohort studied so far, as well as of 14 matched controls (Experiment 2), and 16 university students (Experiment 1) were examined. All were actively engaged in detecting anisochronous time-deviants in otherwise isochronous, metronome-like, sequences. As expected, participants with beat-deafness performed more poorly than controls; this behavioral impairment was accompanied by a reduced P300 component at the neurophysiological level, yet with intact N200. Additionally, the MMN following task-irrelevant intensity-deviants was not different between groups. Together the results suggest normal auditory predictions regarding upcoming tones but unreliable access to its representations. These results mirror the findings with pitch deviants in the pitch-based form of congenital amusia and provide a similar neural signature of the disorder on the pitch and time dimension.</p>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":" ","pages":"109060"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal electrical brain responses to time deviance in beat deafness.\",\"authors\":\"Véronique Martel, Isabelle Peretz\",\"doi\":\"10.1016/j.neuropsychologia.2024.109060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Humans have the spontaneous capacity to track the beat of music. Yet some individuals show marked difficulties. To investigate the neural correlates of this condition known as beat deafness, the cortical electric activity of ten beat-deaf adults, the largest cohort studied so far, as well as of 14 matched controls (Experiment 2), and 16 university students (Experiment 1) were examined. All were actively engaged in detecting anisochronous time-deviants in otherwise isochronous, metronome-like, sequences. As expected, participants with beat-deafness performed more poorly than controls; this behavioral impairment was accompanied by a reduced P300 component at the neurophysiological level, yet with intact N200. Additionally, the MMN following task-irrelevant intensity-deviants was not different between groups. Together the results suggest normal auditory predictions regarding upcoming tones but unreliable access to its representations. These results mirror the findings with pitch deviants in the pitch-based form of congenital amusia and provide a similar neural signature of the disorder on the pitch and time dimension.</p>\",\"PeriodicalId\":19279,\"journal\":{\"name\":\"Neuropsychologia\",\"volume\":\" \",\"pages\":\"109060\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropsychologia\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuropsychologia.2024.109060\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.neuropsychologia.2024.109060","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

人类天生就有追踪音乐节拍的能力。然而,有些人表现出明显的困难。为了研究这种被称为敲打性耳聋的情况的神经关联,研究人员对10名敲打性耳聋的成年人(迄今为止研究的最大队列)、14名匹配的对照组(实验2)和16名大学生(实验1)的皮质电活动进行了检查。所有人都积极参与检测非同步的时间偏差,否则是等时的,节拍器样的序列。不出所料,患有热耳聋的参与者比对照组表现更差;在神经生理水平上,这种行为障碍伴随着P300成分的减少,而N200则保持完整。此外,与任务无关的强度偏差后的MMN在两组之间没有差异。总之,结果表明对即将到来的音调的正常听觉预测,但对其表征的不可靠访问。这些结果反映了基于音高形式的先天性失音的音高偏差的发现,并在音高和时间维度上提供了类似的神经特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal electrical brain responses to time deviance in beat deafness.

Humans have the spontaneous capacity to track the beat of music. Yet some individuals show marked difficulties. To investigate the neural correlates of this condition known as beat deafness, the cortical electric activity of ten beat-deaf adults, the largest cohort studied so far, as well as of 14 matched controls (Experiment 2), and 16 university students (Experiment 1) were examined. All were actively engaged in detecting anisochronous time-deviants in otherwise isochronous, metronome-like, sequences. As expected, participants with beat-deafness performed more poorly than controls; this behavioral impairment was accompanied by a reduced P300 component at the neurophysiological level, yet with intact N200. Additionally, the MMN following task-irrelevant intensity-deviants was not different between groups. Together the results suggest normal auditory predictions regarding upcoming tones but unreliable access to its representations. These results mirror the findings with pitch deviants in the pitch-based form of congenital amusia and provide a similar neural signature of the disorder on the pitch and time dimension.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuropsychologia
Neuropsychologia 医学-行为科学
CiteScore
5.10
自引率
3.80%
发文量
228
审稿时长
4 months
期刊介绍: Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信