{"title":"人工智能在PET/CT癌症成像中的潜力。","authors":"Georgia Panagiota Vazoura, Dimitrios Filos, Evanthia Giannoula, Ioannis Iakovou, Ioanna Chouvarda","doi":"10.1967/s002449912756","DOIUrl":null,"url":null,"abstract":"<p><p>Positron emission tomography/computed tomography (PET/CT) is a hybrid medical imaging technique that combines PET and CT to provide detailed images of the body's anatomical structures and metabolic activity. It is frequently used for oncology and other medical diagnoses. This overview aims to examine how artificial intelligence (AI) has been used in PET/CT, based on recent state-of-art. There are a number of clinical questions in Nuclear Medicine, and AI could provide answers, having the capability to enhance various aspects of medical imaging. The overview focuses on how machine learning (ML) and deep learning (DL), enhance tumor segmentation, classification, diagnosis, disease-free survival prediction and treatment response prediction in oncology. The analysis showed that the application of AI provides reliable results, especially in the fields of classification and diagnosis. In addition, radiomics is a novel research field enabling quantitative analysis of medical images through feature extraction, utilized for AI model implementation. Despite these advances, addressing issues such as dataset size, standardization, and ethical concerns are essential for broad clinical integration of AI in PET/CT oncology imaging.</p>","PeriodicalId":12871,"journal":{"name":"Hellenic journal of nuclear medicine","volume":" ","pages":"212-221"},"PeriodicalIF":0.9000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI potential in PET/CT cancer imaging.\",\"authors\":\"Georgia Panagiota Vazoura, Dimitrios Filos, Evanthia Giannoula, Ioannis Iakovou, Ioanna Chouvarda\",\"doi\":\"10.1967/s002449912756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Positron emission tomography/computed tomography (PET/CT) is a hybrid medical imaging technique that combines PET and CT to provide detailed images of the body's anatomical structures and metabolic activity. It is frequently used for oncology and other medical diagnoses. This overview aims to examine how artificial intelligence (AI) has been used in PET/CT, based on recent state-of-art. There are a number of clinical questions in Nuclear Medicine, and AI could provide answers, having the capability to enhance various aspects of medical imaging. The overview focuses on how machine learning (ML) and deep learning (DL), enhance tumor segmentation, classification, diagnosis, disease-free survival prediction and treatment response prediction in oncology. The analysis showed that the application of AI provides reliable results, especially in the fields of classification and diagnosis. In addition, radiomics is a novel research field enabling quantitative analysis of medical images through feature extraction, utilized for AI model implementation. Despite these advances, addressing issues such as dataset size, standardization, and ethical concerns are essential for broad clinical integration of AI in PET/CT oncology imaging.</p>\",\"PeriodicalId\":12871,\"journal\":{\"name\":\"Hellenic journal of nuclear medicine\",\"volume\":\" \",\"pages\":\"212-221\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hellenic journal of nuclear medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1967/s002449912756\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hellenic journal of nuclear medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1967/s002449912756","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Positron emission tomography/computed tomography (PET/CT) is a hybrid medical imaging technique that combines PET and CT to provide detailed images of the body's anatomical structures and metabolic activity. It is frequently used for oncology and other medical diagnoses. This overview aims to examine how artificial intelligence (AI) has been used in PET/CT, based on recent state-of-art. There are a number of clinical questions in Nuclear Medicine, and AI could provide answers, having the capability to enhance various aspects of medical imaging. The overview focuses on how machine learning (ML) and deep learning (DL), enhance tumor segmentation, classification, diagnosis, disease-free survival prediction and treatment response prediction in oncology. The analysis showed that the application of AI provides reliable results, especially in the fields of classification and diagnosis. In addition, radiomics is a novel research field enabling quantitative analysis of medical images through feature extraction, utilized for AI model implementation. Despite these advances, addressing issues such as dataset size, standardization, and ethical concerns are essential for broad clinical integration of AI in PET/CT oncology imaging.
期刊介绍:
The Hellenic Journal of Nuclear Medicine published by the Hellenic Society of
Nuclear Medicine in Thessaloniki, aims to contribute to research, to education and
cover the scientific and professional interests of physicians, in the field of nuclear
medicine and in medicine in general. The journal may publish papers of nuclear
medicine and also papers that refer to related subjects as dosimetry, computer science,
targeting of gene expression, radioimmunoassay, radiation protection, biology, cell
trafficking, related historical brief reviews and other related subjects. Original papers
are preferred. The journal may after special agreement publish supplements covering
important subjects, dully reviewed and subscripted separately.