被忽视的鞭毛原生生物的系统基因组学支持修订的真核生物生命树。

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2025-01-06 Epub Date: 2024-12-05 DOI:10.1016/j.cub.2024.10.075
Guifré Torruella, Luis Javier Galindo, David Moreira, Purificación López-García
{"title":"被忽视的鞭毛原生生物的系统基因组学支持修订的真核生物生命树。","authors":"Guifré Torruella, Luis Javier Galindo, David Moreira, Purificación López-García","doi":"10.1016/j.cub.2024.10.075","DOIUrl":null,"url":null,"abstract":"<p><p>Eukaryotes evolved from prokaryotic predecessors in the early Proterozoic<sup>1</sup><sup>,</sup><sup>2</sup> and radiated from their already complex last common ancestor,<sup>3</sup> diversifying into several supergroups with unresolved deep evolutionary connections.<sup>4</sup> They evolved extremely diverse lifestyles, playing crucial roles in the carbon cycle.<sup>5</sup><sup>,</sup><sup>6</sup> Heterotrophic flagellates are arguably the most diverse eukaryotes<sup>4</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup> and often occupy basal positions in phylogenetic trees. However, many of them remain undersampled<sup>4</sup><sup>,</sup><sup>10</sup> and/or incertae sedis.<sup>4</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup><sup>,</sup><sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup> Progressive improvement of phylogenomic methods and a wider protist sampling have reshaped and consolidated major clades in the eukaryotic tree.<sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup> This is illustrated by the Opimoda,<sup>14</sup> one of the largest eukaryotic supergroups (Amoebozoa, Ancyromonadida, Apusomonadida, Breviatea, CRuMs [Collodictyon-Rigifila-Mantamonas], Malawimonadida, and Opisthokonta-including animals and fungi).<sup>4</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>19</sup><sup>,</sup><sup>20</sup><sup>,</sup><sup>21</sup><sup>,</sup><sup>22</sup> However, their deepest evolutionary relationships still remain uncertain. Here, we sequenced transcriptomes of poorly studied flagellates<sup>23</sup><sup>,</sup><sup>24</sup> (14 apusomonads,<sup>25</sup><sup>,</sup><sup>26</sup> 7 ancyromonads,<sup>27</sup> and 1 cultured Mediterranean strain of Meteora sporadica<sup>17</sup>) and conducted comprehensive phylogenomics analyses with an expanded taxon sampling of early-branching protists. Our findings support the monophyly of Opimoda, with CRuMs being sister to the Amorphea (amoebozoans, breviates, apusomonads, and opisthokonts) and ancyromonads and malawimonads forming a moderately supported clade. By mapping key complex phenotypic traits onto this phylogenetic framework, we infer an opimodan biflagellate ancestor with an excavate-like feeding groove, which ancyromonads subsequently lost. Although breviates and apusomonads retained the ancestral biflagellate state, some early-diverging Amorphea lost one or both flagella, facilitating the evolution of amoeboid morphologies, novel feeding modes, and palintomic cell division resulting in multinucleated cells. These innovations likely facilitated the subsequent evolution of fungal and metazoan multicellularity.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":"198-207.e4"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life.\",\"authors\":\"Guifré Torruella, Luis Javier Galindo, David Moreira, Purificación López-García\",\"doi\":\"10.1016/j.cub.2024.10.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Eukaryotes evolved from prokaryotic predecessors in the early Proterozoic<sup>1</sup><sup>,</sup><sup>2</sup> and radiated from their already complex last common ancestor,<sup>3</sup> diversifying into several supergroups with unresolved deep evolutionary connections.<sup>4</sup> They evolved extremely diverse lifestyles, playing crucial roles in the carbon cycle.<sup>5</sup><sup>,</sup><sup>6</sup> Heterotrophic flagellates are arguably the most diverse eukaryotes<sup>4</sup><sup>,</sup><sup>7</sup><sup>,</sup><sup>8</sup><sup>,</sup><sup>9</sup> and often occupy basal positions in phylogenetic trees. However, many of them remain undersampled<sup>4</sup><sup>,</sup><sup>10</sup> and/or incertae sedis.<sup>4</sup><sup>,</sup><sup>11</sup><sup>,</sup><sup>12</sup><sup>,</sup><sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup> Progressive improvement of phylogenomic methods and a wider protist sampling have reshaped and consolidated major clades in the eukaryotic tree.<sup>13</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>15</sup><sup>,</sup><sup>16</sup><sup>,</sup><sup>17</sup><sup>,</sup><sup>18</sup><sup>,</sup><sup>19</sup> This is illustrated by the Opimoda,<sup>14</sup> one of the largest eukaryotic supergroups (Amoebozoa, Ancyromonadida, Apusomonadida, Breviatea, CRuMs [Collodictyon-Rigifila-Mantamonas], Malawimonadida, and Opisthokonta-including animals and fungi).<sup>4</sup><sup>,</sup><sup>14</sup><sup>,</sup><sup>19</sup><sup>,</sup><sup>20</sup><sup>,</sup><sup>21</sup><sup>,</sup><sup>22</sup> However, their deepest evolutionary relationships still remain uncertain. Here, we sequenced transcriptomes of poorly studied flagellates<sup>23</sup><sup>,</sup><sup>24</sup> (14 apusomonads,<sup>25</sup><sup>,</sup><sup>26</sup> 7 ancyromonads,<sup>27</sup> and 1 cultured Mediterranean strain of Meteora sporadica<sup>17</sup>) and conducted comprehensive phylogenomics analyses with an expanded taxon sampling of early-branching protists. Our findings support the monophyly of Opimoda, with CRuMs being sister to the Amorphea (amoebozoans, breviates, apusomonads, and opisthokonts) and ancyromonads and malawimonads forming a moderately supported clade. By mapping key complex phenotypic traits onto this phylogenetic framework, we infer an opimodan biflagellate ancestor with an excavate-like feeding groove, which ancyromonads subsequently lost. Although breviates and apusomonads retained the ancestral biflagellate state, some early-diverging Amorphea lost one or both flagella, facilitating the evolution of amoeboid morphologies, novel feeding modes, and palintomic cell division resulting in multinucleated cells. These innovations likely facilitated the subsequent evolution of fungal and metazoan multicellularity.</p>\",\"PeriodicalId\":11359,\"journal\":{\"name\":\"Current Biology\",\"volume\":\" \",\"pages\":\"198-207.e4\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2024.10.075\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.10.075","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

真核生物是从元古代早期的原核生物祖先进化而来的,并从它们已经很复杂的最后一个共同祖先进化而来,分化成几个尚未确定的深层进化联系的超群它们进化出了极其多样化的生活方式,在碳循环中扮演着至关重要的角色。5,6异养鞭毛虫可以说是最多样化的真核生物4,7,8,9,通常在系统发育树中处于基础位置。然而,他们中的许多人仍然取样不足和/或不完整。4,11,12,13,14,15,16,17,18系统基因组学方法的逐步改进和更广泛的原生生物样本重塑和巩固了真核生物树中的主要分支。13、14、15、16、17、18、19最大的真核超级类群之一的阿米巴虫目(Amoebozoa)、Ancyromonadida、Apusomonadida、Breviatea、CRuMs [Collodictyon-Rigifila-Mantamonas]、Malawimonadida和opisthokonta -包括动物和真菌)说明了这一点。4,14,19,20,21,22然而,它们最深层的进化关系仍然不确定。在这里,我们对研究较少的鞭毛菌23,24(14个单胞菌,25,26,7个单胞菌,27和1个培养的地中海散斑Meteora sporadica17)的转录组进行了测序,并对早期分支原生生物进行了全面的系统基因组学分析。我们的研究结果支持了阿莫达目的单系性,crm是阿莫菲亚目(阿莫虫、短缩虫、apusomonads和opisthokonts)的姐妹,而anyromonads和malawimonads形成了一个中等支持的分支。通过将关键的复杂表型特征映射到这一系统发育框架上,我们推断出一种具有挖掘状进食槽的阿莫莫种双flagellate祖先,该祖先后来失去了这种进食槽。虽然短毛虫和单胞虫保留了祖先的双鞭毛状态,但一些早期分化的无毛虫失去了一条或两条鞭毛,促进了变形虫形态的进化,促进了新的摄食方式和复核细胞分裂,从而产生了多核细胞。这些创新可能促进了真菌和后生动物多细胞生物的后续进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life.

Eukaryotes evolved from prokaryotic predecessors in the early Proterozoic1,2 and radiated from their already complex last common ancestor,3 diversifying into several supergroups with unresolved deep evolutionary connections.4 They evolved extremely diverse lifestyles, playing crucial roles in the carbon cycle.5,6 Heterotrophic flagellates are arguably the most diverse eukaryotes4,7,8,9 and often occupy basal positions in phylogenetic trees. However, many of them remain undersampled4,10 and/or incertae sedis.4,11,12,13,14,15,16,17,18 Progressive improvement of phylogenomic methods and a wider protist sampling have reshaped and consolidated major clades in the eukaryotic tree.13,14,15,16,17,18,19 This is illustrated by the Opimoda,14 one of the largest eukaryotic supergroups (Amoebozoa, Ancyromonadida, Apusomonadida, Breviatea, CRuMs [Collodictyon-Rigifila-Mantamonas], Malawimonadida, and Opisthokonta-including animals and fungi).4,14,19,20,21,22 However, their deepest evolutionary relationships still remain uncertain. Here, we sequenced transcriptomes of poorly studied flagellates23,24 (14 apusomonads,25,26 7 ancyromonads,27 and 1 cultured Mediterranean strain of Meteora sporadica17) and conducted comprehensive phylogenomics analyses with an expanded taxon sampling of early-branching protists. Our findings support the monophyly of Opimoda, with CRuMs being sister to the Amorphea (amoebozoans, breviates, apusomonads, and opisthokonts) and ancyromonads and malawimonads forming a moderately supported clade. By mapping key complex phenotypic traits onto this phylogenetic framework, we infer an opimodan biflagellate ancestor with an excavate-like feeding groove, which ancyromonads subsequently lost. Although breviates and apusomonads retained the ancestral biflagellate state, some early-diverging Amorphea lost one or both flagella, facilitating the evolution of amoeboid morphologies, novel feeding modes, and palintomic cell division resulting in multinucleated cells. These innovations likely facilitated the subsequent evolution of fungal and metazoan multicellularity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信