Tomasz Wenta, Guanpeng Wang, Tessa Van Buren, Michal Zolkiewski, Anna Zolkiewska
{"title":"线粒体CLPB是小鼠成髓细胞粒细胞分化开始时的促存活因子。","authors":"Tomasz Wenta, Guanpeng Wang, Tessa Van Buren, Michal Zolkiewski, Anna Zolkiewska","doi":"10.1007/s10495-024-02053-1","DOIUrl":null,"url":null,"abstract":"<p><p>Loss-of-function mutations in the CLPB gene lead to congenital neutropenia due to impaired neutrophil differentiation. CLPB, a member of the AAA+ family of proteins, resides in the intermembrane space of mitochondria. The mechanism by which a loss of CLPB elicits defects in the differentiation program of neutrophil precursor cells is not understood. Here, we used 32D clone 3 (32Dcl3) cells, an interleukin-3 (IL-3)-dependent mouse myeloblastic cell line model, to investigate the effects of CLPB knockout on myeloblast-to-neutrophil differentiation in vitro. We found that CLPB-deficient 32Dcl3 cells showed a decreased mitochondrial membrane potential and increased levels of insoluble HAX1 aggregates in mitochondria, as compared to control cells. Despite those abnormalities, CLPB loss did not affect cell proliferation rates in the presence of IL-3 but it increased apoptosis after IL-3 withdrawal and simultaneous induction of cell differentiation with granulocytic colony stimulating factor (G-CSF). CLPB-deficient cells that survived the stress associated with IL-3 withdrawal/G-CSF treatment expressed the same levels of differentiation markers as control cells. Moreover, we found that increased apoptosis of CLPB-deficient cells is linked to production of reactive oxygen species (ROS). N-acetylcysteine, exogenous free fatty acids, or exogenous citrate protected CLPB-deficient 32Dcl3 cells from apoptosis at the onset of differentiation. The protective effect of citrate was abolished by inhibition of ATP-citrate lyase (ACLY), an enzyme that converts cytosolic citrate into acetyl-CoA, a substrate for protein acetylation. We propose that citrate supplementation may help mitigate the effects of CLPB loss by facilitating ACLY-dependent ROS detoxification in granulocytic precursor cells.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitochondrial CLPB is a pro-survival factor at the onset of granulocytic differentiation of mouse myeloblastic cells.\",\"authors\":\"Tomasz Wenta, Guanpeng Wang, Tessa Van Buren, Michal Zolkiewski, Anna Zolkiewska\",\"doi\":\"10.1007/s10495-024-02053-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Loss-of-function mutations in the CLPB gene lead to congenital neutropenia due to impaired neutrophil differentiation. CLPB, a member of the AAA+ family of proteins, resides in the intermembrane space of mitochondria. The mechanism by which a loss of CLPB elicits defects in the differentiation program of neutrophil precursor cells is not understood. Here, we used 32D clone 3 (32Dcl3) cells, an interleukin-3 (IL-3)-dependent mouse myeloblastic cell line model, to investigate the effects of CLPB knockout on myeloblast-to-neutrophil differentiation in vitro. We found that CLPB-deficient 32Dcl3 cells showed a decreased mitochondrial membrane potential and increased levels of insoluble HAX1 aggregates in mitochondria, as compared to control cells. Despite those abnormalities, CLPB loss did not affect cell proliferation rates in the presence of IL-3 but it increased apoptosis after IL-3 withdrawal and simultaneous induction of cell differentiation with granulocytic colony stimulating factor (G-CSF). CLPB-deficient cells that survived the stress associated with IL-3 withdrawal/G-CSF treatment expressed the same levels of differentiation markers as control cells. Moreover, we found that increased apoptosis of CLPB-deficient cells is linked to production of reactive oxygen species (ROS). N-acetylcysteine, exogenous free fatty acids, or exogenous citrate protected CLPB-deficient 32Dcl3 cells from apoptosis at the onset of differentiation. The protective effect of citrate was abolished by inhibition of ATP-citrate lyase (ACLY), an enzyme that converts cytosolic citrate into acetyl-CoA, a substrate for protein acetylation. We propose that citrate supplementation may help mitigate the effects of CLPB loss by facilitating ACLY-dependent ROS detoxification in granulocytic precursor cells.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-024-02053-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-024-02053-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Mitochondrial CLPB is a pro-survival factor at the onset of granulocytic differentiation of mouse myeloblastic cells.
Loss-of-function mutations in the CLPB gene lead to congenital neutropenia due to impaired neutrophil differentiation. CLPB, a member of the AAA+ family of proteins, resides in the intermembrane space of mitochondria. The mechanism by which a loss of CLPB elicits defects in the differentiation program of neutrophil precursor cells is not understood. Here, we used 32D clone 3 (32Dcl3) cells, an interleukin-3 (IL-3)-dependent mouse myeloblastic cell line model, to investigate the effects of CLPB knockout on myeloblast-to-neutrophil differentiation in vitro. We found that CLPB-deficient 32Dcl3 cells showed a decreased mitochondrial membrane potential and increased levels of insoluble HAX1 aggregates in mitochondria, as compared to control cells. Despite those abnormalities, CLPB loss did not affect cell proliferation rates in the presence of IL-3 but it increased apoptosis after IL-3 withdrawal and simultaneous induction of cell differentiation with granulocytic colony stimulating factor (G-CSF). CLPB-deficient cells that survived the stress associated with IL-3 withdrawal/G-CSF treatment expressed the same levels of differentiation markers as control cells. Moreover, we found that increased apoptosis of CLPB-deficient cells is linked to production of reactive oxygen species (ROS). N-acetylcysteine, exogenous free fatty acids, or exogenous citrate protected CLPB-deficient 32Dcl3 cells from apoptosis at the onset of differentiation. The protective effect of citrate was abolished by inhibition of ATP-citrate lyase (ACLY), an enzyme that converts cytosolic citrate into acetyl-CoA, a substrate for protein acetylation. We propose that citrate supplementation may help mitigate the effects of CLPB loss by facilitating ACLY-dependent ROS detoxification in granulocytic precursor cells.
期刊介绍:
Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.