{"title":"ESCRT介导酵母微核吞噬和巨核吞噬。","authors":"Most Naoshia Tasnin , Yuka Takahashi , Tsuneyuki Takuma , Takashi Ushimaru","doi":"10.1016/j.bbrc.2024.151102","DOIUrl":null,"url":null,"abstract":"<div><div>Endosomal sorting complex required for transport (ESCRT) is required for maintenance of nuclear functions and prevention of neurodegenerative diseases. The budding yeast <em>Saccharomyces cerevisiae</em> is an ideal model for studying ESCRT-dependent diseases. Nucleolar proteins are degraded by macronucleophagy and micronucleophagy after nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) kinase. Here, we show that ESCRT is critical for micronucleophagic degradation of nucleolar proteins upon TORC1 inactivation. In addition, ESCRT was also critical for rDNA condensation and nucleolar remodeling, which is necessary for proper micronucleophagic degradation of nucleolar proteins after TORC1 inactivation. On the other hand, ESCRT was dispensable for bulk macroautophagy, whereas it was also critical for macronucleophagy. Thus, ESCRT has an important role for elimination of nucleolar proteins in response to nutrient deprivation.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"742 ","pages":"Article 151102"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESCRT mediates micronucleophagy and macronucleophagy in yeast\",\"authors\":\"Most Naoshia Tasnin , Yuka Takahashi , Tsuneyuki Takuma , Takashi Ushimaru\",\"doi\":\"10.1016/j.bbrc.2024.151102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Endosomal sorting complex required for transport (ESCRT) is required for maintenance of nuclear functions and prevention of neurodegenerative diseases. The budding yeast <em>Saccharomyces cerevisiae</em> is an ideal model for studying ESCRT-dependent diseases. Nucleolar proteins are degraded by macronucleophagy and micronucleophagy after nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) kinase. Here, we show that ESCRT is critical for micronucleophagic degradation of nucleolar proteins upon TORC1 inactivation. In addition, ESCRT was also critical for rDNA condensation and nucleolar remodeling, which is necessary for proper micronucleophagic degradation of nucleolar proteins after TORC1 inactivation. On the other hand, ESCRT was dispensable for bulk macroautophagy, whereas it was also critical for macronucleophagy. Thus, ESCRT has an important role for elimination of nucleolar proteins in response to nutrient deprivation.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"742 \",\"pages\":\"Article 151102\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24016383\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24016383","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ESCRT mediates micronucleophagy and macronucleophagy in yeast
Endosomal sorting complex required for transport (ESCRT) is required for maintenance of nuclear functions and prevention of neurodegenerative diseases. The budding yeast Saccharomyces cerevisiae is an ideal model for studying ESCRT-dependent diseases. Nucleolar proteins are degraded by macronucleophagy and micronucleophagy after nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) kinase. Here, we show that ESCRT is critical for micronucleophagic degradation of nucleolar proteins upon TORC1 inactivation. In addition, ESCRT was also critical for rDNA condensation and nucleolar remodeling, which is necessary for proper micronucleophagic degradation of nucleolar proteins after TORC1 inactivation. On the other hand, ESCRT was dispensable for bulk macroautophagy, whereas it was also critical for macronucleophagy. Thus, ESCRT has an important role for elimination of nucleolar proteins in response to nutrient deprivation.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics