Xiaomin Xu, Stevan Nikolin, Adriano H Moffa, Mei Xu, Thanh Vinh Cao, Colleen K Loo, Donel M Martin
{"title":"重复经颅磁刺激联合认知训练对改善反应抑制的影响:一项概念验证、单盲随机对照研究","authors":"Xiaomin Xu, Stevan Nikolin, Adriano H Moffa, Mei Xu, Thanh Vinh Cao, Colleen K Loo, Donel M Martin","doi":"10.1016/j.bbr.2024.115372","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Impaired response inhibition is a common characteristic of various psychiatric disorders. Cognitive training (CT) can improve cognitive function, but the benefits may be limited. Repetitive transcranial magnetic stimulation (rTMS) is a promising tool to enhance neuroplasticity, and thereby augment the effects of CT. We aimed to investigate the augmentation effects of rTMS on CT for response inhibition in healthy participants.</p><p><strong>Methods: </strong>Sixty healthy participants were randomly assigned to two experimental groups: one with prolonged intermittent theta burst stimulation (iTBS) + CT and the other with sham iTBS + CT over four experimental sessions. Prolonged iTBS (1800 pulses) was used to stimulate the right inferior frontal cortex (rIFC) and pre-supplementary motor area (pre-SMA) in a counterbalanced order. Participants completed a Stop Signal training task following iTBS over one brain region, followed by the Go/No-Go training task after iTBS over the other brain region. The Stroop task with concomitant electroencephalography was conducted before and immediately after the intervention.</p><p><strong>Results: </strong>There were no significant differences between groups in behavioural outcomes on the Stop Signal task, Go/No-Go task, Stroop task or Behavior Rating Inventory of Executive Functioning for Adults. Similarly, analysis of event-related potentials (ERPs) from the Stroop task (N200 and N400) and exploratory cluster-based permutation analysis did not reveal any significant differences between groups. Subgroup analyses revealed that individuals with higher baseline impulsivity exhibited better learning effects in the active group.</p><p><strong>Conclusions: </strong>This first proof of concept study did not find evidence that four sessions of active rTMS + CT could induce cognitive or neurophysiological effects on response inhibition in healthy participants. However, subgroup analyses suggests that rTMS combined with CT could be useful in improving response inhibition in individuals with high impulsivity. It is recommended that future proof of concept studies examine its potential in this clinical population.</p>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"480 ","pages":"115372"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of repetitive transcranial magnetic stimulation combined with cognitive training for improving response inhibition: A proof-of-concept, single-blind randomised controlled study.\",\"authors\":\"Xiaomin Xu, Stevan Nikolin, Adriano H Moffa, Mei Xu, Thanh Vinh Cao, Colleen K Loo, Donel M Martin\",\"doi\":\"10.1016/j.bbr.2024.115372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Impaired response inhibition is a common characteristic of various psychiatric disorders. Cognitive training (CT) can improve cognitive function, but the benefits may be limited. Repetitive transcranial magnetic stimulation (rTMS) is a promising tool to enhance neuroplasticity, and thereby augment the effects of CT. We aimed to investigate the augmentation effects of rTMS on CT for response inhibition in healthy participants.</p><p><strong>Methods: </strong>Sixty healthy participants were randomly assigned to two experimental groups: one with prolonged intermittent theta burst stimulation (iTBS) + CT and the other with sham iTBS + CT over four experimental sessions. Prolonged iTBS (1800 pulses) was used to stimulate the right inferior frontal cortex (rIFC) and pre-supplementary motor area (pre-SMA) in a counterbalanced order. Participants completed a Stop Signal training task following iTBS over one brain region, followed by the Go/No-Go training task after iTBS over the other brain region. The Stroop task with concomitant electroencephalography was conducted before and immediately after the intervention.</p><p><strong>Results: </strong>There were no significant differences between groups in behavioural outcomes on the Stop Signal task, Go/No-Go task, Stroop task or Behavior Rating Inventory of Executive Functioning for Adults. Similarly, analysis of event-related potentials (ERPs) from the Stroop task (N200 and N400) and exploratory cluster-based permutation analysis did not reveal any significant differences between groups. Subgroup analyses revealed that individuals with higher baseline impulsivity exhibited better learning effects in the active group.</p><p><strong>Conclusions: </strong>This first proof of concept study did not find evidence that four sessions of active rTMS + CT could induce cognitive or neurophysiological effects on response inhibition in healthy participants. However, subgroup analyses suggests that rTMS combined with CT could be useful in improving response inhibition in individuals with high impulsivity. It is recommended that future proof of concept studies examine its potential in this clinical population.</p>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\"480 \",\"pages\":\"115372\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bbr.2024.115372\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bbr.2024.115372","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Effects of repetitive transcranial magnetic stimulation combined with cognitive training for improving response inhibition: A proof-of-concept, single-blind randomised controlled study.
Background: Impaired response inhibition is a common characteristic of various psychiatric disorders. Cognitive training (CT) can improve cognitive function, but the benefits may be limited. Repetitive transcranial magnetic stimulation (rTMS) is a promising tool to enhance neuroplasticity, and thereby augment the effects of CT. We aimed to investigate the augmentation effects of rTMS on CT for response inhibition in healthy participants.
Methods: Sixty healthy participants were randomly assigned to two experimental groups: one with prolonged intermittent theta burst stimulation (iTBS) + CT and the other with sham iTBS + CT over four experimental sessions. Prolonged iTBS (1800 pulses) was used to stimulate the right inferior frontal cortex (rIFC) and pre-supplementary motor area (pre-SMA) in a counterbalanced order. Participants completed a Stop Signal training task following iTBS over one brain region, followed by the Go/No-Go training task after iTBS over the other brain region. The Stroop task with concomitant electroencephalography was conducted before and immediately after the intervention.
Results: There were no significant differences between groups in behavioural outcomes on the Stop Signal task, Go/No-Go task, Stroop task or Behavior Rating Inventory of Executive Functioning for Adults. Similarly, analysis of event-related potentials (ERPs) from the Stroop task (N200 and N400) and exploratory cluster-based permutation analysis did not reveal any significant differences between groups. Subgroup analyses revealed that individuals with higher baseline impulsivity exhibited better learning effects in the active group.
Conclusions: This first proof of concept study did not find evidence that four sessions of active rTMS + CT could induce cognitive or neurophysiological effects on response inhibition in healthy participants. However, subgroup analyses suggests that rTMS combined with CT could be useful in improving response inhibition in individuals with high impulsivity. It is recommended that future proof of concept studies examine its potential in this clinical population.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.